
PERFORMANCE CHARACTERISTICS OF A

KERNEL-SPACE PACKET CAPTURE MODULE

THESIS

Samuel W. Birch, IA-04, DAF

AFIT/GCO/ENG/10-03

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense,
or the United States Government.

AFIT/GCO/ENG/10-03

PERFORMANCE CHARACTERISTICS OF A
KERNEL-SPACE PACKET CAPTURE MODULE

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Samuel W. Birch, B.S.

IA-04, DAF

March 2010

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCO/ENG/10-03

Abstract

Defending networks, network-connected assets, and the information they

both carry and store is an operational challenge and a significant drain on re-

sources. A plethora of historical and ongoing research efforts are focused on

increasing the effectiveness of the defenses or reducing the costs of existing

defenses. One valuable facet in defense is the ability to perform post mortem

analysis of incidents that have occurred, and this tactic requires accurate stor-

age and rapid retrieval of vast quantities of historical network data.

This research improves the efficiency of capturing network packets to disk

using commodity, general-purpose hardware and operating systems. It exam-

ines the bottlenecks between Network Interface Card (NIC) and disk, imple-

ments a kernel-space capture capability to improve storage efficiency, and an-

alyzes the performance characteristics of this approach. The proof of concept

PKAP kernel-space packet capture module avoids the penalties associated with

both the kernel-to-user and user-to-kernel space memory copies, removing un-

necessary overhead and improving the ability of a network capture system to

accurately capture higher network rates with lower computational overhead.

Results show that a kernel-space NIC-to-Disk (N2d) is both possible and

beneficial. The PKAP kernel module can capture packets to disk with a packet

drop rate 8.9% less than the user-space equivalent, at a 95% confidence inter-

val. During the high levels of disk I/O contention produced by queries for the

captured data, the PKAP implementation shows a 3% reduction in CPU uti-

lization, and overall the PKAP implementation reduces memory utilization of

the capture process by 16%.

iv

Acknowledgments

First and foremost, I thank God for His strength and grace throughout this

process. I am reminded daily of how little I control and how much I depend on

the Lord.

I thank my wife and children for their love, support, patience, and under-

standing during the last twenty-two months: This work is as much yours as it

is mine—even if this thesis is “the kind of book that you get bored with after

two seconds of reading it.”

I thank my thesis adviser, Dr. Robert Mills, for providing the right balance

of freedom to explore my ideas, guidance to keep me on track, and patience

to bear with my rabbit trails. I also thank Dr. Barry Mullins and Dr. Ken

Hopkinson for their support and assistance.

Samuel W. Birch

v

Contents
Page

Abstract . iv

Acknowledgments . v

List of Figures . x

List of Tables . xi

List of Acronyms . xii

I. Introduction . 1
1.1 Motivation . 1
1.2 Problem . 2
1.3 Research Objectives 3
1.4 Limitations . 4
1.5 Implications . 5
1.6 Thesis Structure . 6

II. Literature Review . 7
2.1 Background On Packet Capture 7

2.1.1 Sniffing . 7
2.1.2 Capture Types 8

2.1.2.1 Live Analysis 8
2.1.2.2 Cyber Hind-Sight 8

2.1.3 Capture Tools 9
2.1.3.1 Common Tools 9
2.1.3.2 High-End Capture Tools 11

2.2 NIC-to-Disk Packet Capture and Network Security . 12
2.2.1 Purpose . 12
2.2.2 Execution . 13

2.2.2.1 Basic Architecture 13
2.2.2.2 Extended Architecture 15

2.2.3 Cost . 16
2.2.4 Technical Challenges 17

2.3 Packet Capture Mechanics 18
2.3.1 Overview . 18
2.3.2 AF_PACKET (libpcap-1.0.0 vanilla) 19

vi

Page

2.3.2.1 Packet Path 19
2.3.2.2 The pcap File Format 21

2.3.3 NAPI . 23
2.3.4 libpcap-mmap 25
2.3.5 PF_RING: libpcap-ring 26

2.3.5.1 The PF_RING Kernel Module 28
2.3.5.2 The pfring library 31

2.3.6 DMA Ring Module 34
2.4 Storage Efficiency . 34
2.5 Summary . 34

III. Design . 36
3.1 Problem Definition . 36

3.1.1 Goals and Hypothesis 36
3.1.2 Approach . 38

3.1.2.1 Solution Space 38
3.1.2.2 Direction 38
3.1.2.3 Prototype 39

3.2 Moving to the Kernel 40
3.2.1 Linux Kernel Modules 40
3.2.2 Linux Kernel Threads 41
3.2.3 Capturing Packets from Kernel-Space 43

3.2.3.1 Selection of PF_RING 43
3.2.3.2 Modifying PF_RING 44
3.2.3.3 Accessing PF_RING from PKAP . . . 46

3.2.4 Breaking the Rules (Writing Files from Kernel-
Space) . 48

3.3 Architecture Overview 50

IV. Methodology . 52
4.1 System Boundaries . 52
4.2 Evaluation Methodology 54
4.3 System Services . 55
4.4 System Workload . 56

4.4.1 Network Traffic 57
4.4.1.1 Characteristics 57
4.4.1.2 Bitrates 59
4.4.1.3 Duration 59

4.4.2 Data Queries 59

vii

Page

4.4.2.1 Query Object Creation 60
4.4.2.2 Query-Response Workload 60

4.4.3 Disk Maintenance 60
4.5 System Performance Metrics 61
4.6 System Parameters . 61

4.6.1 Capture Method 62
4.6.2 Disk Device Selection 62
4.6.3 Filtering . 62
4.6.4 System Specifications 63

4.7 System Factors . 63
4.7.1 Capture Method 63

4.7.1.1 PKAP Kernel Module 64
4.7.1.2 DaemonLogger 64

4.7.2 Storage Device 65
4.7.3 Network Workload 66

4.7.3.1 Packet Size 66
4.7.3.2 Bitrate 67

4.7.4 Query Workload 68
4.8 Evaluation Technique and Environment 69

4.8.1 Evaluation Environment 69
4.8.2 Evaluation Technique 71

4.8.2.1 Dropped Packet Rate 71
4.8.2.2 CPU Utilization 72
4.8.2.3 Memory Utilization 72
4.8.2.4 Query Delay 73

4.9 Experiment Design . 73
4.9.1 Experiment 0: Pilot Testing 74
4.9.2 Experiment 1: Packets to Disk 75
4.9.3 Experiment 2: Packets to /dev/null 75
4.9.4 Experiment 3: Impact of Data Queries 76
4.9.5 Methodology Summary 77

V. Analysis . 78
5.1 Results and Analysis of Experiment 1 78

5.1.1 Experiment 1 Overview 78
5.1.2 Packet Drop Rate 80
5.1.3 CPU Utilization 83
5.1.4 Memory Utilization 83

viii

Page

5.1.5 Summary Analysis 85
5.2 Results and Analysis of Experiment 2 87

5.2.1 Experiment 2 Overview 87
5.2.2 Packet Drop Rate 90
5.2.3 CPU Utilization 91
5.2.4 Memory . 92
5.2.5 Summary Analysis 92

5.3 Results and Analysis of Experiment 3 93
5.3.1 Experiment 3 Overview 93
5.3.2 Query Metrics 93
5.3.3 Packet Drop Rate 97
5.3.4 CPU Utilization 98
5.3.5 Memory . 99
5.3.6 Summary Analysis 99

5.4 Overall Analysis . 99

VI. Discussion . 101
6.1 Conclusions . 101

6.1.1 Construct a Kernel-space N2d Capability . . . 101
6.1.2 Reduce Packet Drop Rate of the Capture Pro-

cess . 102
6.1.3 Reduce CPU Utilization of the Capture Pro-

cess . 102
6.1.4 Reduce Memory Utilization of the Capture

Process . 103
6.1.5 Retain Query Response Performance of the

Capture Process 104
6.2 Significance . 104
6.3 Future Efforts . 105

Appendix A. DaemonLogger Modifications 106

Appendix B. PF_RING Modifications 108

Bibliography . 114

Vita . 117

ix

List of Figures
Figure Page

2.1 Simple NIC-to-Disk Capture System Architecture 13

2.2 The Extended Architecture of a NIC-to-Disk Capture System 16

2.3 The libpcap-1.0.0 (mainstream) Capture Process 19

2.4 The Libpcap File Format . 24

2.5 The lipcap-1.0.0 + NAPI Capture Process 25

2.6 The libpcap-mmap + NAPI Capture Process 26

2.7 The libpcap-ring + NAPI Capture Process 27

2.8 PF_RING-Aware NIC Driver Flow 30

2.9 PF_RING Protocol Handler Basics 31

2.10 The libpcap-DMA-ring Capture Process 33

3.1 The PKAP Capture Process 50

4.1 Systems Approach Diagram for the NIC-to-Disk Capture
System . 53

4.2 Diagram of the Evaluation Environment 69

5.1 Experiment 1: Summary Graphs of Key Metrics 79

5.2 Experiment 1: Packet Size Impact 81

5.3 Experiment 1: KBps Written / Bitrate Level 82

5.4 Experiment 1: Relationship Between Dropped Packets and
CPU Utilization . 86

5.5 Experiment 2: Summary Graphs of Key Metrics 88

5.6 Experiment 1: Packet Size Impact 89

5.7 Experiment 3: Summary Graphs of Key Process-Based Met-
rics . 94

5.8 Experiment 3: Summary Graphs of Key Query-Based Met-
rics . 95

x

List of Tables
Table Page

4.1 Table of Factor Configuration Sets 73

5.1 Experiment 1 Hypothesis Testing of Dropped Packet Rate . 82

5.2 Experiment 1 Hypothesis Testing of CPU Utilization 84

5.3 Experiment 2 Hypothesis Testing of Dropped Packet Rate . 91

5.4 Experiment 2 Hypothesis Testing of CPU Utilization 92

5.5 Experiment 3 Hypothesis Testing of Query Performance . . 97

5.6 Experiment 3 Hypothesis Testing of Dropped Packet Rate . 98

5.7 Experiment 3 Hypothesis Testing of CPU Utilization 98

xi

List of Acronyms
Acronym Page

ACL Access Control List .57
API Application Programming Interface. .14
ASIC Application Specific Integrated Circuit . 11
BPF Berkeley Packet Filter. .4
BSD Berkeley Software Distribution . 18
caplen capture length. .32
CERT Computer Emergency Response Team . 16
CPU Central Processing Unit . 4
CUT Component Under Test . 52
DMA Direct Memory Access. .11
EOF End Of File . 65
eSATA External Serial Advanced Technology Attachement 71
ext4 Extended Filesystem version 4. .62
FDDI Fiber Distributed Data Interface. .22
FPGA Field Programmable Gate Array . 11
Gbps Gigabit per second . 70
GMT Greenwich Mean Time . 22
GPU General Processing Unit . 11
I/O Input/Output . 36
IP Internet Protocol . 60
IPG Inter-Packet Gap . 59
IPv4 Internet Protocol version 4 . 5
IPv6 Internet Protocol version 6 . 5
IRQ Interrupt Request . 20
ISR Interrupt Sevice Request. .23
KBps KiloBytes per second . 80
L2 OSI Layer 2 . 28
L3 OSI Layer 3 . 28
L4 OSI Layer 4 . 28
LKM Linux Kernel Module .4
LXR Linux Cross Referencer . 38
MAC Media Access Controller . 19

xii

Page

Mbps Megabits per second. .14
N2d NIC-to-Disk . 2
NAPI New Application Programming Interface . 23
NAS Network Attached Storage . 58
NIC Network Interface Card . 4
NIDS Network Intrusion Detection System . 10
NTP Network Time Protocol .70
pcap libpcap packet capture . 4
pps packets per second . 67
RAID Redundant Array of Innexpensive Disks . 58
RX Receive . 26
SAN Storage Area Network. .3
SATA Serial Advanced Technology Attachment . 57
SMP Symmetric Multiprocessing . 71
snaplen snapshot length . 32
SNMP Simple Network Management Protocol . 69
SPAN Switched Port Analyzer . 14
SUT System Under Test . 41
TLB Translation Lookaside Buffer . 42
TX Transmit . 26
UDP User Datagram Protocol . 57
VLAN Virtual Local Area Network. .29
VFS Virtual Filesystem Service . 62

xiii

PERFORMANCE CHARACTERISTICS OF A

KERNEL-SPACE PACKET CAPTURE MODULE

I. Introduction

T HIS chapter introduces the history, state of the art, and current chal-

lenges associated with the collection and use of captured network traffic

for forensic analysis. It identifies a specific problem and the focus of this re-

search, then it proposes a hypothesis and discusses the design elements of the

solution

Section 1.1 highlights the rationale for current methods of network cap-

ture. Section 1.2 reviews the problem space and identifies the general direc-

tion of this research. Section 1.3 presents the objectives of the research, while

Section 1.4 identifies assumptions and limits. Finally, Section 1.6 maps the

structure of this document.

1.1 Motivation

Computer networks have vastly improved communication of information,

utility of distributed knowledge, and efficacy of the decision process with re-

spect to the timeliness of shared knowledge. The pervasive nature of electronic

communications technology has brought with it new levels of interdependence.

Rapid distribution of information and resources has provided significant in-

creases in both synergy and efficiency; however, these benefits do come at a

cost.

In a conceptual sense, the cost can be described by the adage A chain is

only as strong as its weakest link. While this philosophical representation of

the cost as increased risk is easily understood in the context of network se-

curity, the symbolism of a chain falls short in describing the significant and

1

oft-unknown liabilities of dependence in the massively-connected webs of trust.

More concretely, the cost is most readily felt in the strain on resources to es-

tablish and maintain the necessary layers of protection required to ensure the

intended benefits are experienced by the intended actors.

One such layer of protection is accomplished through the capture and

temporary storage of network frames as they traverse boundaries of interest.

While many security-related devices capture data, the focus of this thesis is

on a NIC-to-Disk (N2d) capture capability, distinguishing itself by storing the

captured data straight to disk. Other than filters used to express traffic of in-

terest, no analysis is accomplished. Packets are captured and written to disk

as quickly as possible for analysis, trending, and other forensic post mortem

activity. While capturing packets alone will not protect the network commu-

nications, it serves a vital role in the overall protection of the information and

resources that are enabled by the network.

Network capture is cyber hind-sight. It allows network defenders to vali-

date automated alarms—minimizing poor decisions based on false-positives. It

provides the ability to reinvent active defenses through post mortem analysis

of a successful network attack or policy failure. It provides opportunities to

improve training through a full-context scenario on once-live data.

Like video surveillance in physical security, the recording process itself

does nothing to protect; however, the effect of both the live and forensic anal-

ysis provides significant advantages to those who need to validate automated

alarms, look for activity that is beyond what the alarm technology is built to

detect, and identify the actors, methods, and purposes for a recorded event.

1.2 Problem

The list of benefits attributed to capturing and analyzing network traffic

is impressive; but then, so are the resources needed to capitalize on them. As

2

performance requirements increase, so do the resources required to accurately

capture network data and retrieve it. Keeping up with increasing network

speed requires defenders to either dedicate greater resources to the task or

reduce the amount of resources the task requires.

Commercial solutions tend to incorporate greater resources against the

task of getting packets from the network interface to permanent storage. These

N2d capture systems use high speed storage systems, such as a Storage Area

Network (SAN), and distribute the capture duties across multiple systems ded-

icated to the task. This approach is effective but costly. The cost of the hard-

ware, rack-space, power, and cooling to keep it operating properly prevent its

use in all but the most critical environments.

Research contributions have led to significant advances in generic net-

work capture—the collection of data from the network to an analysis tool. Ef-

forts have continually reduced bottlenecks and unnecessary capture overhead

to get the data to a user-space application, such as Snort or Wireshark. There

have been significant gains over the last several years in this direction, but

these solutions address only the penalty for transition from the kernel to user-

space–leaving untouched the transition from user to kernel-space that is still

required for writing the data to disk.

To improve the N2d efficiency of commodity capture systems, this research

will address a relatively untouched portion of network capture architectures–

removing the user to kernel-space transition when writing the data to disk.

1.3 Research Objectives

The high-level objective for this research is to improve the performance of

an N2d capture system; however, this thesis will focus on the design, implemen-

tation, testing, and analysis of a kernel-mode N2d capability. The PKAP Linux

kernel module will implement a kernel thread which will collect network data

3

from an in-kernel ring buffer and write it to disk in a series of rotating libpcap

packet capture (pcap)-format logs. The capture system, as shown in Figure 2.1

would be placed at a network boundary to capture and record network traffic

in support of post mortem analysis. The system will capture packets of inter-

est by supporting Berkeley Packet Filter (BPF) filtering, and it will allow for

automated user-space retrieval of the packets for analysis.

The primary goals for this research are to construct the first-known im-

plementation of an N2d capture capability in kernel space, improve the accu-

racy of network capture by minimizing dropped packets, and reduce the CPU

requirements to perform network capture at high speeds.

Building on previous research efforts to enhance the capture side of the

equation, the proposed capture system will utilize a modified PF_RING Linux

Kernel Module (LKM) [14] to efficiently move the packets from the Network

Interface Card (NIC) to a ring-buffer. The PKAP kernel module will retrieve

the captured packets from the ring buffer and write them to disk. The PKAP

module will implement an N2d capture functionality wholly inside the kernel

with the following objectives:

• Reduce dropped packet rate due to latency between the NIC and the disk

• Reduce Central Processing Unit (CPU) utilization of the capture process

• Reduce memory utilization of the capture process

• Retain user-space retrieval performance of the stored packets

1.4 Limitations

The following is a list of limitations for this research:

• This thesis will not address any legal issues with capturing this data. It

is assumed that the legal authority is in place to perform both collection

and analysis.

4

• This effort will target only the capture of data and its retrieval. It will not

provide research into how to analyze the data beyond the rationale for the

capture system accessing methods and performance requirements.

• The PKAP proof of concept will implement only Internet Protocol version

4 (IPv4)-based structures. This will allow prototyping with known pro-

tocols and existing network data against existing tools. Ideally, an IPv6-

based structures would be used, given that IPv4 packets can be stored

within an Internet Protocol version 6 (IPv6) addressing scheme. . . however,

this would complicate the process greatly for a proof that is not yet known

to provide the requisite performance gains to pay for the complexity. Ad-

ditionally, the existing PF_RING work is not yet capable of IPv6 capture

and would require significant efforts to include the functionality. The use

of IPv4 during this effort will not directly alter the findings for the N2d
capture; however, it will have some effect in the workload necessary to

create the sk_buff kernel structure and to execute packet filtering. Since

filtering is a required capability, the workload should affect any capture

method similarly.

1.5 Implications

A PKAP-based capture system will reduce unnecessary overhead in writ-

ing captured packets to disk. The improved efficiency will allow higher net-

work rates to be captured through improved efficiency with existing hardware.

Reduced cost would potentially be seen through some combination of the fol-

lowing: reduced capture system hardware components, reduced rack-space, re-

duction of power and cooling requirements, and improved accuracy of analysis.

Improved efficiency at this low level will also induce improved top-end per-

formance of distributed systems, allowing capture capabilities to more closely

follow the speed limits of storage. Considering the vast investment by Law

Enforcement, Homeland Defense, the Department of Defense, and industries

5

such as financial and medical institutions, any reduction of unnecessary over-

head will improve the cost to benefit ratio.

1.6 Thesis Structure

Chapter II provides background information about packet capture and

presents the state of relevant research on the subject. Chapter III delves into

the details of designing the PKAP kernel-space N2d capture capability, and

Chapter IV provides the methodology used to conduct the performance anal-

ysis of the capture system. Chapter V presents the results and analysis of the

system performance, and Chapter VI identifies the conclusions drawn from the

performance analysis and indicates future issues in this research area.

6

II. Literature Review

T HIS chapter presents background information and applicable research

related to network forensics, capturing packets, Linux kernel internals,

and storage. Due to both legal and financial constraints, the research area

concerning the behavior and performance of N2d capture has received little at-

tention in any direct form. That said, there is a significant amount of historical

and ongoing research in the related areas of generic packet capture, storage

performance, filesystem design, and operating system efficiency. Section 2.1

provides a brief introduction to capturing packets—including common terms,

types, and tools. Section 2.2 relates the general packet capture concepts to net-

work security, while Section 2.3 provides a deeper discussion on the mechanics

of current packet capture implementations and advances.

2.1 Background On Packet Capture

2.1.1 Sniffing. Sniffing is a term commonly used to identify the promis-

cuous retrieval of network traffic. To sniff packets from a network, a physical

device must provide a copy of the data traversing the network, and the snif-

fer must be able to capture the data without the network hardware, firmware,

drivers, network stack, or sniffing application dropping a packet that is not ad-

dressed to the sniffer system itself. Sniffing and capturing are sometimes used

synonymously; however, sniffing typically indicates analysis, while capture can

indicate both analysis and storage.

The common method for sniffing the network is through the use of the

libpcap library. According to the CHANGES file distributed with libpcap, ver-

sion 0.0 of libpcap was released on 20 Jun 94. As of the writing of this thesis,

the latest official release of the mainstream libpcap library was in 2008 [16],

though there are also several prominent forked libraries as well. Section 2.3

will discuss the mechanics of libpcap in greater detail.

7

2.1.2 Capture Types. There are a wide variety of reasons to capture

network packets. While some uses require only the header information of a

packet, others require the full packet. Capture of full packet is significantly

more difficult than capturing only headers; yet, it continues to enable appli-

cations that require only the header. This research proposes to increase effi-

cient handling of the capture data in order to prevent loss of data. To continue

pursuit of this end, the remainder of the document discusses only full-packet

capture.

2.1.2.1 Live Analysis. Live analysis is the most significant use of

captured network data. To be analyzed live simply means that the packets ful-

fill their purpose as they are retrieved. That purpose could be simply ensuring

that network packets have gotten to a specific point, or it could be a detailed,

context-sensitive analysis of a network session to detect network intrusions.

As seen in the evolution of packet capture technology presented in Section 2.3,

this category of capture end-use is the principle driving force behind most cur-

rent research—getting captured packets from the disk to the analyzer process

as quickly as possible.

2.1.2.2 Cyber Hind-Sight. There is not a generally accepted term

to address this packet capture end-use. Cyber hind-sight is a description of the

rationale for employing this type of capture, but this thesis refers to this ac-

tivity as N2d capture. The only parsing or analysis of the packet that is accom-

plished upon retrieval is simple filtering to discard any packets that are not of

interest. The capture mechanism exists not to analyze, but to write the packet

data out to disk for later use.

As mentioned briefly in Chapter I, the N2d capture capability provides a

resource similar to that of video cameras. It allows incident handlers to evalu-

ate methods, identify further detail after the fact, and even glean motives based

8

upon expert analysis of the recorded behavior. Not only does the capture assist

in determining what has happened, it also provides the hind-sight necessary to

alter both architecture and policy to prevent it from happening again.

The performance characteristics that impact live analysis directly impact

N2d capture as well. It is from the point that the packets are available to the

capture application that the computational challenges differ significantly be-

tween live analysis and cyber hind-sight. While the post-capture challenges for

live analysis tend to be memory size constraints and CPU speed, the challenges

for cyber hind-sight tend to be bus speeds, I/O overhead, and shared access to

a limited storage device.

2.1.3 Capture Tools. The software application that orchestrates the

capture process and ultimately what to do with the captured packet is the cap-

ture tool. Most common tools link to libpcap for the actual capture functionality,

but there are some that do not.

2.1.3.1 Common Tools. The few mentioned here are represen-

tative of the category, but in reality, there are far too many capture tools to

list. The capture tools in this category all use the libpcap library to accomplish

the capture process, and all the ones listed are open-source projects that are

available to anyone. In fact, some are packaged by default with common Linux

distributions.

TCPDUMP is a command line utility that has been commonly distributed

with Unix-based systems since version 2.0 was made publicly available in 2001.

It has been the standard packet sniffing tool for system administrators, net-

work administrators, network security personnel, academic researchers, hack-

ers, and crackers. It is capable of both live analysis and N2d capture, but it is

diminished as the best options for either use today. TCPDUMP is still a useful

9

staple of Unix-based distributions, but most users wanting a generic protocol

analyzer have turned to more graphical or sophisticated tools like Wireshark.

Wireshark began life in 1997 under the name Ethereal, when Gerald

Combs started its development in an effort to better understand networking;

it was renamed to Wireshark in 2006 [22]. The authors list for Wireshark

currently contains over 600 contributing authors, and the number of contribu-

tions grows as features are desired or protocol dissectors are needed to support

research. Wireshark provides the default graphical interface, a command line

version of the full utility named tshark, and a host of small pcap utilities. Wire-

shark is also capable of both live analysis and N2d capture; however, it is not an

efficient option for the latter.

Snort is one of the best known Network Intrusion Detection System

(NIDS) available today; yet it also began life in 1998 as a simple sniffer. Mar-

tin Roesch first created Snort to gain experience with cross-platform libpcap

development and to more easily see the application layer of captured traffic.

Over time, Snort developed into one of the most capable full-blown NIDS avail-

able today [31]. Snort provides highly customizable analysis and alarming for

live packet capture, and it also provides the ability to cobble together an easily

batch-driven N2d capability—though somewhat cumbersome in dependencies,

configuration complexity, and program size for this purpose.

DaemonLogger was specifically designed to be a lightweight N2d capabil-

ity. Also written by Martin Roesch, DaemonLogger is a libpcap-based capture

service with an extremely straightforward and focused code base for the pur-

pose of both writing captured packets to disk and managing the rotation of

capture files for long-term capture tasks [32]. Though many tools exist that

could be used for the long-term capture of packets to disk, this is one of the

few applications that was designed to do that alone—and do it with the least

amount of complexity and overhead possible. The efficiency of code and func-

10

tion made it the clear choice to represent user-space N2d methodologies for this

thesis’s performance analysis.

2.1.3.2 High-End Capture Tools. An abundance of more highly

specialized commercial capture tools also exist today. These tools may or may

not use libpcap; some customize the mainstream library, while others forsake

it completely. These high-end tools often employ purpose-built hardware to

provide extremely high network capture rates, albeit at the cost of a much

higher investment.

Products in this category can provide significant advances in the efficiency

of collecting packets of interest from the network to the analysis application.

The typical approach is to use hardware-based network classification such as

Network Processors, Field Programmable Gate Arrays (FPGAs), Application

Specific Integrated Circuits (ASICs), or multiple cores in a General Process-

ing Unit (GPU) to identify a filtered data stream of interesting traffic at line

rates before the packets even touch the capture application host’s system bus or

memory. Also commonly provided is a custom version of libpcap that provides

Direct Memory Access (DMA) from the specialized hardware to the capture ap-

plication. Some tools provide transparent load balancing of the captured pack-

ets to support data rates higher than a single host system could consume, while

a few commercial tools provide acceleration of the analysis tool itself—whether

that tool be Snort or some other libpcap-based tool.

These steps all provide highly optimized capture paths to sniff packets

from the network and provide them to a live analysis tool; however, the capture

optimizations employed can actually serve to make the problem with storage

more apparent. Storage technology is not able to keep up with data transmis-

sion or computation rates. Optimizing the capture portion of an N2d capability

only further exacerbates the situation where storage is not able to consume the

network traffic. At the moment, the solution is to distribute the packets to be

11

captured to a sufficient number of capture devices to meet the network load.

This solution chooses to throw more resources at the problem, and it will work

for those with enough resources to purchase and utilize the SANs and server

farms required.

2.2 NIC-to-Disk Packet Capture and Network Security

2.2.1 Purpose. Network security is an umbrella term that covers many

tools and policies, with the ultimate goal of ensuring that networked resources

are available only to those people or systems that should have access to them

when they should have access. Information Security is the essence of network

security, and it is commonly described by a triad of concepts: confidentiality,

integrity, and availability [7]. While this triad has been extended by some to

include more specific, and somewhat overlapping concepts (i.e., Authentication,

Non-Repudiation, etc.), the triad summarizes the common goal well and suc-

cinctly.

• Confidentiality: concealing information or resources so that only those

authorized have the ability to access them

• Integrity: ensuring that the information or resources have not been al-

tered without being detected

• Availability: making the information or resources available to those who

need them when they need them

Full-packet network capture is one network security tool. Capturing packets

from the network to a storage device is a powerful enabler. According to the

computer crime experts at Foundstone, Inc., network-based evidence allows an

organization to accomplish a number of tasks [25]:

- Confirm or dispel suspicions surrounding an alleged computer
security incident

- Accumulate additional evidence and information

12

Figure 2.1: Simple NIC-to-Disk Capture System Architecture

- Verify the scope of a compromise
- Identify additional parties involved
- Determine a time line of events occurring on the network
- Ensure compliance with a desired activity

2.2.2 Execution.

2.2.2.1 Basic Architecture. Figure 2.1 illustrates the basic archi-

tecture of an N2d capture system. One of the simplest implementations of an

N2d capture capability is to install Linux on a spare computer system, connect

that system to a hub between an internal network of interest and its default

gateway, and run software such as TCPDUMP to identify packets of interest

and store them to disk in a pcap-format file. This example is better suited to

troubleshooting a very small and slow network than providing a network secu-

rity capability; however, the core pieces are present: 1) A place to plug in that

provides a copy of all the packets transmitted across a boundary of interest (the

13

hub), 2) A networked system that can be placed in promiscuous mode to receive

packets not destined for itself, 3) a filtering capability to sniff only those pack-

ets that meet identified criteria for capture, and 4) software that will write the

captured packets to disk according to a standard format that will allow other

tools to parse and analyze the packets later.

The pcap-formatted file mentioned above is referring to the generally ac-

cepted standard for network capture. This standard is the format of the libp-

cap capture library that is used almost universally to obtain raw packets from

a system’s NIC. The library is available on all common operating systems, to

include Microsoft Windows in the form of the WinPCAP driver. It presents a

standard Application Programming Interface (API) for the preparation and use

of a network device to promiscuously sniff traffic as well as to store the traffic to

disk. Section 2.3 will discuss libpcap in much greater depth, but the important

thing for now is that an N2d system must use a standardized file format to take

advantage of existing tools suites.

In times past, Ethernet or Fast Ethernet hubs were the tools of choice

to sniff packets; however, the current network standard is Gigabit Ethernet,

and hubs do not exist for that environment. Using a hub will impose a harsh

penalty on the network link it is used on, forcing a limitation of 100 Megabits

per second (Mbps), so for most environments the only two options to obtain

a copy of the packets is through the monitoring port (sometimes called the

Switched Port Analyzer (SPAN) port) of a managed switch or through a spe-

cialized network tap device. Determining which of the two is most appropriate

depends on the following factors: network speed (Gigabit, 10-Gigabit), phys-

ical network type (fiber, copper), and number of capture interfaces required.

Other options exist for wireless networks, load-balanced sniffing, etc., but they

are not the common case. In medium to large networks, using switch monitor-

ing ports is ideal, since they are 1) already part of the infrastructure and 2)

14

dynamically configurable to provide both local and remote sniffing throughout

the infrastructure.

It is also possible to place the capture device inline, either as a routing

device or transparent bridge. This option is seldom chosen since the capture

system becomes a single point of failure with reliability significantly less than

dedicated network infrastructure. High end systems with specialized network

hardware and purpose-built processing can provide inline capture and storage

functionality with the reliability of dedicated network infrastructure; however,

this approach is beyond the scope of this research.

2.2.2.2 Extended Architecture. While Section 2.2.2.1 depicts the

principle workload of the capture system, it is important to understand that

the capture of packets to disk is only an internal service. The external, and

most significant, service provided by an N2d system is the actual retrieval and

utilization of the captured packets. Figure 2.2 depicts the extended architec-

ture of the system. Though the extended architecture is not directly addressed

by this research, its purpose for and methods of extracting data from the N2d
collector is relevant in the endeavor to streamline the collector system.

Once the data is captured and stored on the collector, it remains there

until requested or expired. The request could be automated, triggered by an

alarm; or it could be manual, generated by an analyst attempting to dig fur-

ther into a possible incident. Other requests could come from archival systems

or data-mining processes. Regardless of the source, the collector must be ca-

pable of retrieving the requested data and sending it to the requester without

compromising the ability to continue reliable packet capture. The retrieval pro-

cess can vary; however, the action typically involves processing the capture files

through filters to build custom capture files containing only the connection(s)

requested. Parsing the captured files introduces a read workload to the sys-

15

Figure 2.2: The Extended Architecture of a NIC-to-Disk Capture System

tem that could interrupt the task of writing captured packets to disk or become

blocked, hindering the satisfaction of the request for captured data.

2.2.3 Cost. In reality, security is an acceptable probability of risk, as

determined by the balance between the cost of a threat exploiting a vulnerabil-

ity and the cost of preventing the exploitation. There are many combinations of

tools and policies to achieve a level of acceptable risk; in the case of network se-

curity, the tools may extend from deploying anti-spam protection to employing

an entire Computer Emergency Response Team (CERT), capable of full-time

network defense. The prudent quantity of resources invested in protection, de-

tection, and response technology is determined by the risk—the combination of

the serious nature of the threats and the impacts of the vulnerabilities, should

they be exploited.

The cost of the N2d collector itself can be significant for large networks,

but it is eclipsed by the investment in the extended architecture and personnel

required to make use of it. For this reason, N2d capture systems are typically

16

employed only when the threats are well-resourced and the cost of exploitation

is very high. The total costs include:

• Network infrastructure that supports dedicated capture: procuring the

hardware that allows sniffing (hubs, SPAN-enabled switches, dedicated

taps, etc.) and building networks that meet sniffing requirements without

destroying desirable redundancy

• Capture systems capable of ingesting the network data rates

• Storage devices/systems capable of simultaneous write and read speeds

required of the system

• Related systems necessary to take advantage of the captured date (data

mining, alarming, etc.)

• Personnel trained to properly use the recorded traffic—both technically

and legally

• Physical infrastructure to support all the above (power, cooling, space,

etc.)

2.2.4 Technical Challenges. The performance characteristics of the

capture process impact both the cost and the scalability of the system. The

principle performance challenge of an N2d system is that the cost for the storage

system adequate for a given bitrate is far greater than the cost for the network

infrastructure required to sustain that same bitrate.

Illustrating the problem with capturing network data in real-time, a team

of researchers trying to increase the performance of a Sprint network account-

ing tool stated, “We already have in place an OC-48 passive monitoring system

for capturing and storing a detailed record for every packet. But because of

constraints on storage and bus bandwidth this will not be feasible at 10 Gb/s

and above.” [20] The main purpose of the network accounting tool is to capture

network traces, which are representative packet flow records for every packet

17

stream traversing a network. The researchers perceived the practical limit of

the current capture mechanism to be roughly OC-48, after which they would

need to adapt the format and compression of the data to get past bus limita-

tions. The team estimated that “Disk array speed cannot keep up with link

bandwidth. At OC-192 speed, a packet-level trace would require a disk band-

width of roughly 250 MB/s (assuming 300 Byte packets and a 64 Byte long

packet records).” [20]

N2d capture devices must store more than just the flow records; they need

to capture full packets. An N2d system could not rely on a 5:1 reduction from

transmitted data to stored data. In fact, an N2d system must store more data

than is transmitted on the wire to account for the 16 byte per packet header

for the pcap standard. Compression could be used to store redundant packet

header data per session; however, the pre and post processing required to store

and retrieve the data would likely increase the latency between capture and

storage rates.

2.3 Packet Capture Mechanics

This section discusses the mechanics of current packet capture techniques

and the direction of recent advances to the technology. The fundamental ba-

sis for most techniques is rooted in libpcap, so the following sub-sections will

begin with the mainstream libpcap and discuss significant changes that have

improved overall capture performance.

2.3.1 Overview. The libpcap library has existed as a public, Berkeley

Software Distribution (BSD)-licensed library since version 0.0 was released in

1994, and it is included as a standard library with many Unix and Unix-like

operating systems [16]. Though the library can be installed on most operating

systems in use today, the background presented here will focus on the Linux

implementation.

18

Figure 2.3: The libpcap-1.0.0 (mainstream) Capture Process: Significant use of
memory and queuing provide low performance and difficult mea-
surement of dropped packets

2.3.2 AF_PACKET (libpcap-1.0.0 vanilla).

2.3.2.1 Packet Path. Figure 2.3 depicts the path that packets

take when a capture application is linked with the mainstream libpcap library.

There are many additional paths and functions that are associated with the

reception of a packet from a network interface; however, this discussion is lim-

ited to the paths relevant to promiscuous capture using the standard libpcap

methods on Linux.

The packet is copied to various segments of system memory no less than

five times before it can be written to a storage device. Packets captured and

stored via the mainstream libpcap will follow this path unless they are filtered

out. Packets can be filtered in one of two common ways: 1) the NIC can filter

out packets not destined for its Media Access Controller (MAC) address if not

in promiscuous mode, and 2) a BPF could be used to discard packets that match

19

specific patterns. The following describes the steps of the packet from the NIC

to the disk:

1. The NIC uses a DMA transfer to place the frame into the DMA buffer

assigned to it and triggers a hardware Interrupt Request (IRQ) to let the

driver know that a frame has been placed in the NIC’s assigned DMA

buffer space [4].

2. The NIC driver has registered a callback function, called an interrupt

handler, for the specific IRQ assigned to the NIC. This handler retrieves

the frame from the DMA buffer, inserts the raw frame data into a socket

buffer (sk_buff), initializes some of the sk_buff parameters and sched-

ules a NET_RX_SOFTIRQ soft-IRQ for the network stack to pick up the

sk_buff from another buffer space in kernel memory [4].

3. The network stack uses a function named netif_receive_skb() to

handle the sk_buff placed in the queue by the NIC driver, and this func-

tion will pass a copy of the sk_buff to the receive queue of any protocol

taps—these initiated by libpcap’s creation of an AF_SOCKET socket, allow-

ing the sk_buff to bypass layer 3 and layer 4 protocol handlers [4].

4. Packets in an AF_SOCKET protocol handler’s receive queue are retrieved

one at a time via libpcap’s pcap_read_linux() call and passed to the

capture application callback functional [16,38].

• This process uses a recvmsg() syscall on the socket descriptor ob-

tained when libpcap created an AF_SOCKET socket.

• The result is an expensive kernel-space to user-space copy.

5. For an N2d application, the callback function will usually gather relevant

traffic statistics, perform pcap log file rotation as needed, and call the

libpcap pcap_dump() function which uses the fwrite() function from

the glibc library to begin the transfer of the packet to a storage device [16].

20

• fwrite() buffers the data to be written to disk, so the packets are

copied into a user-space buffer until the buffer is full [27].

• The buffering requires additional copies, but the user-space to user-

space copies significantly reduce the number of syscalls and associ-

ated user-space to kernel-space copies—ultimately improving write

performance beyond what is capable without buffering [19].

6. When the write buffer is filled during an fwrite() call (or fsync() is

called), the buffer is written in a single write() syscall and copied from

user-space to kernel-space inside the Linux kernel’s vfs_write() call

[38].

7. The VFS transparently calls the write file operation provided by the driver

for the filesystem containing the pcap dump file, and the driver writes the

buffer data to the buffer cache and marks the page dirty [26].

8. The Linux kernel utilizes pdflush worker threads to write dirty pages

from the buffer cache to the storage device [26].

Excepting a poorly written capture application, this describes the worst case

path through the Linux implementation of the libpcap library.

2.3.2.2 The pcap File Format. Due to the longevity of libpcap

and the fact that the library is the standard for packet capture, the format

that libpcap uses to save packet data to disk has become the de facto standard

for network capture data. The basic pcap file format has remained unchanged

since 1998 [12]. There are alternatives that provide better clock granularity

or other benefits; however, the pcap-format is generally used in order to take

advantage of the myriad of libpcap-based third-party applications that exist for

collection, analysis, and manipulation.

The format specifies both a global file header and a per-packet header to

identify contextual information that would otherwise be lost if only the frame

21

itself was written to disk verbatim. Figure 2.4 [5,12,16] graphically depicts the

layout of the headers within a pcap-formatted file and provides both the global

and per-packet header structures.

The global header is 24 bytes long and includes seven fields to identify

the characteristics of the capture file. The magic_number field is used to de-

tect the byte ordering of the file. All systems, regardless of byte ordering, write

the same number to the first data field of the pcap file. When the file is read,

the reading application can determine the byte ordering of the file by the on-

disk representation of the magic number and treat the remainder of the file

accordingly. The global header also includes the major and minor version num-

bers to ensure the same file format is used to both create and read the capture

file. The thiszone field contains signed representation of the time shift from

Greenwich Mean Time (GMT) in seconds; however, this is typically set to 0 in

practice. The sigfigs field is unused and always set to 0, but its intended use

was the identification of the accuracy of the time stamps. The snaplen field

reveals the snapshot length of the libpcap library when creating the file; the

snapshot length is the maximum number of bytes captured. The smaller of the

frame size or the snaplen is the maximum number of bytes of the frame saved

to the disk. The network field identifies the type of network frames the file

contains; this could be one of numerous types (i.e., Ethernet, Token Ring, Fiber

Distributed Data Interface (FDDI), etc.); however, the field is most commonly

set to 1, which represents Ethernet. [12]

The per-packet header is 16 bytes long and includes three fields—one of

which is a struct timeval, containing two 32-bit fields. The timeval struc-

ture contains the fields tv_sec and tv_usec, which represent the time the

packet was captured to within microsecond granularity. The tv_sec field is

the number of seconds since January 1, 1970 00:00:00 GMT, and the tv_usec

field represents the number of microseconds from the current tv_sec. This

granularity of time is the most limiting factor of the current libpcap file format,

22

and it is the most commonly adapted portion of the headers in alternative cap-

ture formats. The caplen field represents the number of bytes of the packet

that was written to the file, which allows the file parser to jump to the next

packet header. The len field represents the original length of the packet. If the

caplen is sufficiently long, the len and caplen fields will be equal; however

if the caplen is shorter than the len, then the reading application knows that

the packet was truncated by the capturing application’s snaplen setting. [12]

2.3.3 NAPI. Figure 2.5 depicts the path that packets take when a cap-

ture application is linked with the mainstream libpcap library and the Linux

kernel is configured to use the New Application Programming Interface (NAPI)

enhancement to network device scheduling. NAPI affects the capture process

at a much lower layer than libpcap, and its impact is more broad than packet

capture alone. NAPI significantly reduces CPU overhead through a hybrid of

polling and signaling for network card drivers.

Prior to NAPI, network drivers had two mutually exclusive options to

retrieve packets from the DMA buffer assigned to the NIC. The first option

required the NIC to trigger an Interrupt Sevice Request (ISR) (hardware/real

IRQ), for which the device driver would have registered a callback function. Us-

ing this method, every packet received would require an IRQ; this is very cheap

for network devices with very low utilization, but it creates an IRQ storm dur-

ing high usage. This storm would debilitate even the most well-resourced sys-

tems. The second option utilized device drivers that would poll the DMA buffer

periodically, rather than registering a callback for the NIC’s ISR. While the

polling performed very well under high loads, it tended to waste considerable

CPU cycles during periods of low network use. [4]

NAPI is not itself a new way to retrieve packets; rather, it is the com-

bination of the best qualities of signaling and polling. Under periods of high

use, the driver automatically shifts to polling. When the polling activity re-

23

'

&

$

%

/*
* Global Header Structures: As used in pkap.h after adaptation

* from the libpcap-1.0.0 library

*/

// from savefile.c
#define TCPDUMP_MAGIC 0xa1b2c3d4

// from pcap.h
#define PCAP_VERSION_MAJOR 2
#define PCAP_VERSION_MINOR 4

struct pcap_file_header {
uint32_t magic;
u_short version_major;
u_short version_minor;
int32_t thiszone; /* gmt to local correction */
uint32_t sigfigs; /* accuracy of timestamps */
uint32_t snaplen; /* max length saved of each pkt */
uint32_t linktype; /* data link type (LINKTYPE_*) */

};

'

&

$

%

/*
* Packet Header Structures: As used in pkap.h after adaptation

* from the libpcap-1.0.0 library

*/

// from pcap-int.h
// NOTE: This definition is important, since the system timeval
// uses 64-bit integers...
struct pcap_timeval {

int32_t tv_sec; /* seconds */
int32_t tv_usec; /* microseconds */

};

struct pcap_sf_pkthdr {
struct pcap_timeval ts; /* time stamp */
uint32_t caplen; /* length of portion present */
uint32_t len; /* orig length of packet */

};

Figure 2.4: The Libpcap File Format: Depicting the global and per-packet
header placement and structure

24

Figure 2.5: The lipcap-1.0.0 + NAPI Capture Process: The memory usage has
not changed, but the changes to the NIC Driver to utilize a hybrid
Poll/IRQ process saves significant CPU time

turns no data too many times in a row, the driver will switch to a signaling

method by registering the callback for the ISR. Then once a new packet ar-

rives, the handler will unregister the ISR handler and begin polling again. It

is the demand switching between signaling and polling that allows a driver to

use the minimum CPU resources to receive packets for whatever the network

load circumstances may be. [4]

2.3.4 libpcap-mmap. Figure 2.6 depicts the path of packets through a

capture system using a memory mapped ring buffer to remove the kernel-space

to user-space copy penalty. The memory mapped ring optimizations are now

available in the version 1.0.0 mainstream libpcap library. For libpcap to utilize

the memory mapped ring buffer, the AF_PACKET protocol handler of the Linux

kernel must be modified to build and share the ring with the user-space library.

These modifications have become part of the official Linux kernel sources, but

25

Figure 2.6: The libpcap-mmap + NAPI Capture Process: Removed the ex-
pensive kernel-space to user-space copy by memory mapping the
kernel-space memory into libpcap’s user-space

the configuration option may or may not be compiled into the default kernel

binaries of a particular Linux distribution.

The memory mapped approach is similar in concept with, but imple-

mented differently than, the PF_RING approach discussed in Section 2.3.5.

Libpcap-mmap appears to optimize for a more general use of raw sockets;

whereas, PF_RING seems to be optimized more specifically for passive capture.

The libpcap-mmap library and associated modifications to the AF_PACKET

protocol handler provide both Receive (RX) and Transmit (TX) memory map-

ping; however, all packets still flow from the NIC drivers receive function to

each of the protocol handlers. This approach differs from PF_RING; additional

discussion will follow in the detailed description of the PF_RING approach.

2.3.5 PF_RING: libpcap-ring. Figure 2.7 depicts the path of pack-

ets through a capture system using the PF_RING memory mapped ring buffer.

26

Figure 2.7: The libpcap-ring + NAPI Capture Process: Establishing a
PF_RING protocol prevents the packets from going through the net-
work stack, allowing the NIC driver to deliver the skb directly to a
ring-buffer that is accessible by the user-space libpcap-ring library

27

PF_RING is currently at version 4.1.0, and it includes a modified version of the

libpcap-1.0.0 library [14]. The modified libpcap (libpcap-ring) allows applica-

tions that utilize libpcap to take advantage of the PF_RING advances without

requiring changes to the application’s source code.

Though using the libpcap-ring library is advantageous for porting existing

libpcap-based applications, using PF_RING through libpcap is not required, as

all the interaction with the PF_RING kernel module occur through the pfring

user-space library. The pfring library is included in the PF_RING source tree,

and it can be used by a user-space application directly. In fact, libpcap-ring

does not directly manipulate the ring buffer; the modifications to libpcap-ring

provide access to the ring buffer through the pfring library. Use of libpcap-ring

requires no source code changes on the part of a libpcap application; however,

the application must be recompiled with the libpcap-ring library to accommo-

date correct linking [15].

2.3.5.1 The PF_RING Kernel Module. The PF_RING kernel

module is a dynamically loadable Linux kernel module that implements the

PF_RING protocol handler. The PF_RING protocol handler resides at OSI

Layer 2 (L2), the same level as the AF_PACKET protocol handler. Rather than

force modifications to the AF_PACKET protocol handler in the official Linux

kernel source tree, PF_RING created its own handler, so that changes could be

made without concern that they would break other users of the protocol [15].

The PF_RING protocol handler can receive packets in the same way that

AF_PACKET receives packets—inserting itself into the list of waiting packet

sniffers that will get copies of the incoming packet. This method allows protocol

handler to get a copy of the packet without forcing the packet to be processed

through the OSI Layer 3 (L3) or OSI Layer 4 (L4) network stack functions. Ad-

ditionally, if used with PF_RING-aware network device drivers, the PF_RING

28

kernel module can receive packets with a direct hook—bypassing the standard

netif_receive_skb() function and the additional workload it would entail.

The PF_RING module registers its protocol handler using

the dev_add_pack() function. This action effectively places the

PF_RING packet_rcv() function in the list of handlers that the

netif_receive_skb() copies packets to as the NIC driver receives pack-

ets from its device. This method is necessary if other non-PF_RING-based

capture tools are being used, the system requires standard network commu-

nication outside passive packet capture, or if bridging or Virtual Local Area

Network (VLAN) activities are required.

For cases where the above mentioned activities are not required and a

PF_RING-enabled NIC driver can be used, PF_RING can use its registered

hook to bypass the netif_receive_skb() duties and send the sk_buff

directly to the PF_RING handler. Figure 2.8 steps through the conditions

used by the PF_RING-enabled Intel e1000e NIC drivers—showing that the

hook->ring_handler() can ingest the packet and cause the NIC’s receive func-

tion to return prior to any standard Linux networking calls, specifically

netif_receive_skb() [14].

Bypassing the core Linux packet reception function,

netif_receive_skb(), prevents general use of the NIC when PF_RING

is enabled, but the benefit is improved efficiency of passive capture by for-

going the processing time required to perform the principle duties of the

netif_receive_skb() function call, which are [4]:

- Passing a copy of the frame to each protocol tap, if any are run-
ning

- Passing a copy of the frame to the L3 protocol handler associated
with skb->protocol

- Taking care of those features that need to be handled at this
layer, notably bridging

29

Figure 2.8: PF_RING-Aware NIC Driver Flow: The bold path is the optimized
packet path through the PF_RING-aware NIC driver for passive
sniffing

Once the PF_RING module has the packet, whether by protocol handler or

protocol hook, it provides the following processing options, as depicted in Figure

2.9:

1. Optionally captures TX packets

2. Parses out the necessary portions of the sk_buff header (would have

been accomplished in the network stack, had the packet been fully pro-

cessed via that method)

3. Optionally defragments fragmented packets

4. Populates the timestamp and length fields of the sk_buff header section

5. Iterates through a list of all PF_RING ring buffers that currently exist on

the system

(a) For each running ring that is registered against the source device:

30

Figure 2.9: PF_RING Protocol Handler Basics: Depicts the basic flow of pack-
ets from the NIC to the ring buffer, where it is then the capture
application’s responsibility to retrieve the packets from the ring

i. The packets are optionally filtered by a rule set attached to the

ring

ii. Packets that pass any filters are copied (up to the snaplen config-

uration of the ring) into an available slot of that ring

(b) If no empty slots are available, the packet is discarded and counted

as lost

The PF_RING kernel module is responsible for creating and populating the

ring buffer; beyond this, the ring must be consumed by applications using ei-

ther the libpcap-ring library or the the pfring library directly.

2.3.5.2 The pfring library. The pfring library is used to create,

configure, and control ring buffers in the PF_RING kernel module. All actions

by the pfring library require the PF_RING kernel module to be loaded. The

following list describes the flow of a typical use of the pfring library [14]:

1. Create a PF_RING ring buffer: This is accomplished through standard

socket calls, creating a socket in the PF_RING domain, with a socket type

31

of SOCK_RAW, and a protocol definition of htons(ETH_P_ALL)—which

means all packets

ring->fd = socket(PF_RING, SOCK_RAW, htons(ETH_P_ALL));

2. Configure the ring: Using setsockopt(), configure ring settings (i.e.,

TX-capture, promiscuity, snaplen, application name, etc.)—the below

sample sets the snapshot length (snaplen) of the ring slots to capture

length (caplen)

setsockopt (ring->fd, 0, SO_RING_BUCKET_LEN, &caplen,

sizeof(caplen));

3. Memory map the ring memory into the application’s memory space: Using

mmap() on the socket descriptor returned when the socket was created,

map the portion of kernel memory into that of the user-space application

such that the memory is shared between the PF_RING kernel module and

the application using the pfring library

ring->buffer = (char *)mmap(NULL, memSlotsLen,

PROT_READ|PROT_WRITE,

MAP_SHARED, ring->fd, 0);

4. Enable the ring: Using setsockopt() again, instruct the PF_RING ker-

nel module to begin populating the ring

setsockopt(ring->fd, 0, SO_ACTIVATE_RING, &dummy,

sizeof(dummy));

5. Consume the ring slots: In a pthread-safe manner, travel the ring accord-

ing to standard ring buffer behavior to look for slots with a slot_state

= 1, representing a populated slot ready to consume and mark empty

(a) The consumer needs only be concerned with the ring’s remove_idx

and slot_state, while the PF_RING kernel module must account

32

Figure 2.10: The libpcap-DMA-ring Capture Process: replaced driver controls
NIC to DMA transfer packets directly to a DMA ring, accessible
by a modified libpcap library

for available space and lost packets using both the insert_idx and

remove_idx

(b) The consumer needs to ensure wrapping occurs to maintain a valid

index to the ring

6. Closure of the ring: Unmap the shared memory region to shut down ring

operations

munmap(ring->buffer, ring->slots_info->tot_mem);

The pfring library facilitates much greater control and flexibility than the

above example. It allows insertion and deletion of filtering rules, creation of

ring clusters to load balance captured packets across multiple rings, control

of sampling rates for cases where sampling is desirable, and gathering ring

statistics [14].

33

2.3.6 DMA Ring Module. Figure 2.10 depicts the path of packets

through a system utilizing a DMA-ring to pass packets from the NIC to the

capture application. The method is conceptually similar to both libpcap-mmap

and libpcap-ring; however, the research removed another copy by modifying

the network device driver and firmware so that the DMA buffer assigned to the

NIC was in fact the same ring made available to the capture application. This

reduced the copy count by an additional copy, and it allowed for very specific

control of the timing from the network device. [8]

This research seems promising for N2d applications; however, the imple-

mentation details and source code are not publicly available, and there is no

mention of providing filtering logic in the ring. Addition of the filtering logic

would require parsing out packet headers, possibly reducing the efficiency and

performance of the DMA-ring mechanism as reported by the research team

that developed it [8].

2.4 Storage Efficiency

While Section 2.3 describes the advances in capture technology, there is

no commensurate treatment of the storage of the captured packets. Filesystem

and storage device advances would certainly impact the performance of writing

the captured packets to disk; however, these advances would tend to improve

the performance of packet storage in the same fashion that improved CPU and

bus speeds would improve packet capture. These advances do not address the

choke points of the packet workflow.

2.5 Summary

This chapter presents background information on packet capture technol-

ogy and uses. It lists principle benefits, commonly used tools, and categorized

purposes for capturing packets from a live network. The mechanics of cap-

turing packets to a permanent storage device is described, and the technical

34

challenges of performing N2d capture are discussed. Current research related

to improved packet capture technology is presented, and the gap in research

for a complete N2d capture system is identified.

35

III. Design

T HIS chapter provides a detailed view of the design and design process of

the PKAP kernel-space N2d capability. Section 3.1 reframes the problem

definition in greater detail and describes the aims of the prototype. Section

3.2 describes the challenges and design decisions associated with moving the

capture capability to the Linux kernel, and Section 3.3 provides an overview of

the resultant architecture.

3.1 Problem Definition

Packet capture systems are computationally disadvantaged in keeping up

with network data rates. This is especially true for N2d systems which are

Input/Output (I/O) bound, due to the slow nature of permanent storage. As dis-

cussed in Chapter II, many efforts have been applied to improving the perfor-

mance of getting the packets from the NIC to a user-space program for analysis.

This improved performance addresses only one side of the transactions between

kernel-space and user-space, while accepting the penalty for the costly inverse

copies required to write the captured data to disk.

3.1.1 Goals and Hypothesis. In its simplest form, the objective of this

research is to improve the performance of a N2d capture system. Given this,

several obvious approaches are available. Options at the top of the list would

certainly include: 1) distribution of the network traffic across multiple systems

to keep the load of each machine within the range that allows for reliable cap-

ture and storage of network data, 2) increasing system hardware specifications

(i.e., CPU speed, Memory size and speed, storage controller, storage media,

etc.), or 3) identification of opportunities to utilize the existing hardware more

efficiently.

This research targets the last option, since the optimization of code will

allow the first two methods to scale more easily to handle even higher net-

36

work throughput. Regardless of the advances in storage, they will likely never

match the computational speed of the processor or communication rates of the

network interfaces. The removal of bottlenecks will create the opportunity for

improved performance at every level of hardware, allowing users of already-

fielded systems to reap the benefit of higher performance without the cost of

replacing the existing hardware or of supplementing it with additional hard-

ware.

The following lists the targeted improvements that guiding the design of

an improved N2d capability:

• Reduce CPU utilization for the capture task

• Reduce the memory consumption of the N2d task as a whole

• Reduce the rate of dropped packets when under high network utilization

• Retain user-space disk responsiveness to satisfy live queries for the cap-

tured data

It is no secret that permanent storage is one of the slowest resources of com-

puters and networks today; considering that, the goal of this research could be

restated as “enable the N2d system to store captured packets to disk at the theo-

retical maximum sequential write speed of whatever permanent storage device

is attached, with minimum CPU and memory resourced consumed.” Regard-

less of buffer sizes and speeds, the fastest possible sustainable capture speed is

limited to the maximum sustained write speed of the storage device.

It is hypothesized that an N2d system utilizing a kernel-space capture

thread can capture a significantly greater percent of network traffic, with fewer

system resources, than a user-space capture application at any network speed.

It is also hypothesized that an N2d capture system can accomplish the improved

capture rate without negatively impacting the response delay for live data calls

to the disk for the captured data.

37

3.1.2 Approach. The following sub-sections provide a high-level

roadmap in how this research approaches the problem of capturing packets

to permanent storage in a disk-bound environment:

3.1.2.1 Solution Space. The first step was to evaluate the chain

of custody for the bits from the point the NIC places the received packets in

its driver’s buffer to the point where they are physically taken out of the buffer

cache by the storage controller. It would be ideal to state “the NIC” as the

beginning and “the disk” as the end state, but this would be beyond the scope

of software programmability–moving into the realm of a hardware solution.

Tracing the bits as they travel through drivers, frameworks, APIs, queues,

and applications is not for the faint of heart; and more importantly, it is not

possible with closed-source operating systems or drivers. This fact forced the

use of an open-source operating system with strong community support. Thus,

the basis for the N2d capture system is the 64-bit version of Fedora 11. The

open nature of the code and the community provided the best possible oppor-

tunity for success. The Linux Cross Referencer (LXR) aided greatly in tracing

the packet’s path by allowing one to surf through the Linux kernel code in a

completely cross-referenced environment.

Further rationale for the selection of a Linux distribution for the oper-

ating system is the fact that most software packet capture research available

today is on Linux. As seen in Chapter II, the availability of source code, commu-

nity support, and other research efforts to build on provide strong arguments

to use Linux.

3.1.2.2 Direction. Significant performance gains have been

achieved through removal of unnecessary layers of abstraction, context

switches, and wasteful copies. Positive results from libpcap_mmap, PF_RING,

and DMA_RING were beacons pointing the way to remove unnecessary barri-

38

ers between kernel-space and user-space. The success of these efforts begged

the question “could similar gains be achieved by removing the user-space to

kernel-space copies when the final destination of the captured data is the disk?”

That question drove the effort to determine the most viable way to remove

the copy. Could the downward copy be removed via the mapping of kernel mem-

ory into the application space in the same way that the upward copy was erad-

icated? In theory, the answer was yes; however, further investigation showed

that memory mapping was already being used by the user-space libraries to

squeeze the most performance out of the constrained interface between user-

space and kernel-space. The complexity of attempting to further optimize the

existing use of memory mapping, combined with an unchanged penalty for ac-

complishing the context switches of system calls, pointed to avoiding user-space

altogether. The functionality of the capture application is relatively straightfor-

ward, and placing it inside the kernel meant that any context switches would

be between kernel threads and significantly more efficient.

3.1.2.3 Prototype. The proof of concept for this research is the

design, development, and comparative performance analysis of a kernel level

N2d capture capability. The goal of the proof system is to demonstrate that mov-

ing both the capture and storage capabilities into kernel-space significantly im-

proves the performance of an N2d capture system. The performance parameters

and the metrics for judging the performance are discussed in detail in Section

4.5; however, it is important to understand that the rate of dropped packets is

the most significant internal metric of an N2d system. CPU utilization, memory

utilization, and query response rates are also key metrics—though they mean

little if the packet drop rate is high.

39

3.2 Moving to the Kernel

The PKAP kernel module builds on existing user-space-oriented packet

capture research, while adding the ability to store the packets to disk without

incurring the penalties for a user-space to kernel-space copy, the context switch,

and the overhead involved in a system call. The PKAP-enabled N2d system will

retrieve network packets from the NIC, provide filtering capabilities to retrieve

only packets of interest, and write the packets of interest to disk in such a for-

mat that the network activity can be reconstructed at a later time. These ac-

tions are standard N2d activities; whether the application is TCPDUMP, Snort,

DaemonLogger, or another custom-built tool to capture packets to disk, each

application provides the listed actions as fundamental capabilities.

Hurdles exist for moving an N2d capability into the kernel. The design

and development of the PKAP kernel-mode capture capability bears witness

that the hurdles are not insurmountable; however, the paths over and around

them are not always straightforward or community-supported.

3.2.1 Linux Kernel Modules. Documentation, instruction, and assis-

tance in understanding and implementing Linux kernel modules exist through-

out available research, published reference books, and the thriving community

of experts on the subject. In fact, one challenge facing new-comers to Linux ker-

nel development is being overwhelmed and confused by the overlapping and oft

contradicting material. The Linux kernel has evolved significantly, and its ap-

proaches to scheduling, threading, task management, interrupts, network I/O,

and countless other areas have changed significantly in just this last decade.

Books and papers published for version 2.4 of the Linux kernel can provide

pertinent insight into version 2.6 of the kernel for a significant portion of the

material; however, it can take inordinate amounts of effort to resolve which in-

formation is no longer accurate—or precisely which kernel version makes the

information invalid.

40

A relatively small portion of the Linux kernel, its core functionality, is

statically compiled into the kernel binary. A significant percentage of device

drivers, non-essential functionality, and other capabilities that are considered

more volatile are provided through kernel modules. The modularity of the

Linux kernel provides ample opportunity to enhance portions of a running op-

erating system to meet changing demands.

The implementation of the PF_RING protocol handler is one such en-

hancement. Rather than force changes to other portions of the Linux network

stack, the new capability is able to be dynamically inserted without altering

the standard behavior of the existing code for other kernel or user-space code

that depend on it. Building such capability as a dynamically loadable module

prevents the usage of complex conditional logic to determine when to use the

new capability. It is employed when the module is inserted, and nonexistent

otherwise.

This type of flexibility is necessary for implementing and evaluating

kernel-level prototypes; therefore, the design and implementation of the

kernel-level N2d capability is directed to the PKAP kernel module, and the

packet capture mechanism to be modified to support network sniffing inside

the kernel is directed to the PF_RING kernel module. The ability to dynam-

ically insert these capabilities into a vanilla Linux kernel is important for an

accurate performance analysis of the System Under Test (SUT), which will be

discussed in greater detail in Chapter IV.

3.2.2 Linux Kernel Threads. Kernel threads are typically used as

background processing agents for tasks that may block [13]. One of the most

likely examples of such a background process is the bdflush kernel daemon.

The bdflush daemon is responsible for the background task of writing dirty

pages from the buffer cache to the physical storage device [2]. While this dae-

mon stood alone at one time, current kernels implement the bdflush daemon

41

as a storage-specific set of the pdflush daemon threads, as depicted in Fig-

ure 2.7 [38]. The pdflush daemon is implemented as a set of threads that

both grow and shrink in number within configurable minimum and maximum

thread count boundaries to match the demand of storage, and this dynamic

thread count will have a particular bearing on both the experimental design

and the performance evaluation, to be covered in detail in Chapter IV and

Chapter V respectively.

Since any writes to a physical device can block, all kernel capabilities

that perform such actions should be implemented either very carefully as a

tasklet (currently replacing what was once known as bottom-half code) or as

a kernel thread. Tasklets use soft-IRQs and may soon be deprecated in new

kernel code due to potential scheduling pitfalls caused by running code at such

a high priority [13]. The PKAP N2d function is specifically tasked with writing

data to disk—or more accurately, to the buffer cache where the dirty pages

will be written to disk by the pdflush threads. Therefore, the PKAP module

provides the core N2d functionality as a kernel thread.

Several methods exist to create a kernel thread. At this time, the current

method of choice for the general case is through the use of the kthread_run()

helper macro, which will create, daemonize, and wake up the thread [39]. Dae-

monization of a thread simply means that all file descriptors are removed from

the thread (including stdin, stdout, and stderr), all signals are disabled,

and the parentage of the thread is changed to kthreadd—the default owner of

background kernel threads [13]. The PKAP module uses kthread_run() to

create pkap_thread, the daemonized N2d loop.

An additional benefit of implementing PKAP as a kernel thread is that

the CPU can switch to “lazy Translation Lookaside Buffer (TLB) mode”. The

CPU can afford to wait to flush the TLB when executing a kernel thread, since

kernel threads have no user-space connections; therefore, kernel threads have

42

no need to access the user-space page tables. This allows rapid and efficient

context switching with respect to the execution of a kernel thread [9].

3.2.3 Capturing Packets from Kernel-Space. Capturing packets from

the network is a key function of providing N2d capture services. The various

implementations of the libpcap library provide user-space applications ready

access to packet capture capabilities; however, no standard libraries exist for

capturing packets from within kernel-space.

3.2.3.1 Selection of PF_RING. Several factors went into selecting

the method to capture packets inside the kernel. These factors include the

following:

1. Efficient

2. High Performance

3. Ability to provide packet filtering

4. Does not require changes to kernel code

5. Can be used for both user-space and kernel-space capture applications in

order to control comparative performance analysis to isolate the differ-

ences of writing from within the kernel

Considering these factors, PF_RING stands out as a clear choice. Other libp-

cap implementations require changes to the core kernel code in order to share

the ring inside the kernel-space. Development and proper configuration of a

netfilter plug-in is highly complex and unable to be used by existing user-

space capture applications. A custom NIC device driver would be an unknown

quantity, and would also be difficult to use with available user-space applica-

tions. The DMA-ring would also be a good candidate if source were available

for the existing research; however, development of the capture capability itself

is beyond the scope of this research. PF_RING provides:

43

1. Reasonable resource utilization for the given performance [15]

2. Performance above or equivalent to other available libpcap implementa-

tions [15]

3. Native packet filtering capability

4. A dynamically loadable kernel module, so the capabilities can be inserted

into a standard Linux platform without kernel modifications

5. A lightweight pfring library, demonstrating the essential elements of ring

creation, configuration, and use

6. A libpcap-ring library, so existing applications can use the library

7. Multiple sample applications to fully demonstrate library usage

3.2.3.2 Modifying PF_RING. The ring buffer used by PF_RING

is memory allocated in kernel space. When used by a user-space application,

the pfring library maps the kernel-space memory into the application’s mem-

ory; however, since pkap_thread runs in kernel, only minor modifications

to PF_RING are required to support a kernel-space capture thread. These

changes include:

1. Exporting a pointer to a PKAP-enabled PF_RING ring buffer

#define PKAP_ENABLED

#ifdef PKAP_ENABLED

struct ring_opt *pkap_pfr;

EXPORT_SYMBOL(pkap_pfr);

#endif

2. Addition of the pkap_enabled flag to struct ring_op

struct ring_opt {

u_int8_t ring_active;

// SNIPPED...

44

/* PKAP Ring Switch */

u_int8_t pkap_ring; // 0=not_pkap 1=pkap

};

3. Addition of setsockopt() options to PKAP-enable the initialized

PF_RING ring buffer by setting a pkap_enabled and pointing the ex-

ported pointer to the ring

// In linux/pf_ring.h

#define SO_SET_PKAP_RING 119

// In pf_ring.c - ring_setsockopt()

#ifdef PKAP_ENABLED

case SO_SET_PKAP_RING:

if (pkap_pfr && (pkap_pfr->pkap_ring == 0)) {

pkap_debug("ERROR: Can only be one PKAP Ring!\n");

return -EINVAL;

} else if (pkap_pfr && (pkap_pfr->pkap_ring == 1)) {

pkap_debug("WARNING: This ring is already a PKAP Ring...\n");

ret = 0;

} else {

pkap_pfr = pfr; /* This exports the current pfr to kernel

space so a PKAP-enable kernel thread can

read from this ring through an extern

declared pkap_pfr variable */

pkap_pfr->pkap_ring = 1;

pkap_debug("Converted PF_RING to PKAP_RING\n");

ret = 0;

}

break;

#endif /* PKAP_ENABLED */

4. Addition of /proc filesystem status reporting to mark PKAP-enabled

rings as such

// In pf_ring.c - ring_proc_get_info()

45

#ifdef PKAP_ENABLED

rlen += sprintf(buf + rlen, "PKAP Ring? : %d\n",

pfr->pkap_ring?1:0);

#endif

5. Altering the num_ring_users cleanup facilitator to allow for multiple

ring users

// In pf_ring.c - add_skb_to_ring()

// Ravelling...

#ifdef PKAP_ENABLED

atomic_inc(&pfr->num_ring_users);

#else /* PKAP */

atomic_set(&pfr->num_ring_users, 1);

#endif /* PKAP */

// Unravelling...

#ifdef PKAP_ENABLED

atomic_dec(&pfr->num_ring_users);

#else /* PKAP */

atomic_set(&pfr->num_ring_users, 0);

#endif /* PKAP */

The PF_RING standard functionality and behavior is unchanged from

the official PF_RING source until setting SO_SET_PKAP_RING with the

setsockopt() call. This allows the same PF_RING kernel module to service

the kernel-space PKAP, the user-space libpcap-ring based application, or even

both at the same time (though exercise of that feature is beyond the scope of

this research).

3.2.3.3 Accessing PF_RING from PKAP. With a PF_RING ca-

pable of accommodating access from within the kernel, the PKAP module re-

quires the functionality of the user-space pflib inside the kernel. Simply using

46

the user-space library from a kernel module is not possible, so the mechanisms

used in user-space must be converted to kernel-space equivalents.

Since the PF_RING module implements the PF_RING protocol using the

standard Linux networking framework, the pfring uses the standard user-

space socket API to create, configure, use, and close a PF_RING ring buffer.

The user-space API is executed by syscalls into the Linux core networking

code, where a similar kernel-level API exists to carry out the instructions of the

user-space calls. The user-space socket() function is handled by the kernel-

space sock_create() function. The functions are roughly equivalent, but the

kernel-space functions use a struct socket rather than the socket descrip-

tor that the user-space functions use. This is similar to the difference between

struct file and file descriptors, discussed in 3.2.4.

The PKAP module creates a kernel-space equivalent to every socket API

required to use PF_RING. The list of user-space, socket-related calls includes:

socket(), bind(), setsockopt(), and close(). The kernel-space calls

sock_create() and sock_setsockopt() behave similarly to the user-space

calls that share a naming similarity; however, the bind() call required a differ-

ent approach. As shown in the code snippet below, the bind() functionality did

not have a kernel-space equivalent (i.e., sock_bind()); the socket’s bind()

socket operation had to be used.

static int pkap_bind(struct socket *sock) {

struct sockaddr sa;

int retval;

sa.sa_family = PF_RING;

snprintf(sa.sa_data, sizeof(sa.sa_data), "%s", pkap_device);

retval = sock->ops->bind(sock,(struct sockaddr*)&sa,sizeof(sa));

if (retval < 0) {

printk(KERN_ERR "PKAP: Could not bind socket[%d]\n",retval);

return retval;

47

}

debug("Successfully bound socket!\n");

return 0;

}

3.2.4 Breaking the Rules (Writing Files from Kernel-Space). Writing

of network data to disk is the second key function of providing N2d capture

services; however, this is not a generally-acceptable task for the Linux kernel.

The direct access of files from within kernel-space is so taboo, that those who

dare request the method to accomplish it are often treated quite harshly. An

anecdotal illustration of both the resistance to accessing files from kernel-space

and the broad sweeping inclination to do so anyway is the title of an article

about such matters: “Driving Me Nuts - Things You Never Should Do in the

Kernel” [21].

The reasons for resisting file access from within the kernel are sound. The

common purpose for interest in accessing files from a kernel module is to read

configuration information from a file. This can be dangerous due to the diffi-

culties in ensuring that the file is available, and that the file contents are as

expected. Performing the checks and conditional logic necessary to open, read,

and parse a file that could be missing, damaged, or maliciously altered are dif-

ficult enough in user-space; however, any error in accomplishing these tasks in

kernel-space will likely cause failure or compromise of the system, since kernel

modules run at system level without any of the protections or restrictions of

user-space applications.

Despite community resistance, methods for accessing files from kernel-

space exist in at least two locations [13, 21]. Both sources approach the topic

with similar methods for both reading and writing. Though early iterations of

the PKAP module employed these methods almost exactly (specifically using

vfs_write() to write the file data out to the file), the final version directly

48

struct file *log_file;

/* Initial approach */
nbytes = vfs_write(log_file,packet,

sf_hdr.caplen + sizeof(sf_hdr),
&log_file->f_pos);

/* Final approach */
nbytes = log_file->f_op->write(log_file,

bktdata, hdr->caplen,
&log_file->f_pos);

Listing 3.1: In-Kernel File Write Methods

uses the write() file operation pointed to by the in-kernel file structure.

This method bypasses unnecessary condition checking in the vfs_write()

call and relies on the filp_open() call to ensure that the conditions are met

initially, without requiring the checks to be re-accomplished for every write.

Of particular note is that the kernel file operations use struct file,

rather than the file descriptor that would be returned by a typical call to the

user-space fopen(). The file structure provides the direct access to the file

operations for the filesystem that the file resides on. It is this direct access that

makes it possible to dispense with vfs_write().

The PKAP kernel module avoids many of the pitfalls of accessing files

from within the kernel, since it only writes data to disk. Before writing, PKAP

accomplishes the normal file operation checks to ensure the file has been open

properly for writing. That said, there is still risk involved in a write-only ac-

cess from kernel-space. Though the PKAP kernel module never reads the pcap

log files it writes, its log file rotation algorithm overwrites files in the course of

operation. With no limits on what files can be accessed from kernel-space, mis-

configuration or malicious links in the target filesystem could trick the PKAP

module into destroying a file or filling a disk that it should not. These potential

vulnerabilities can be largely addressed through carefully placed user-space

permissions on the target filesystem.

49

Figure 3.1: The PKAP Capture Process: Using a modified PF_RING, the PKAP
kernel module removes all kernel-to-user and user-to-kernel space
copying and implements the write() file operation directly without
going through the Virtual File System

3.3 Architecture Overview

Section 3.2.3 described the design of the requisite components for a

kernel-space N2d system, but this section will provide the architectural

overview that describes how the pieces come together. Figure 3.1 depicts the

PKAP architecture. Notice that the figure does not contain a user-space area;

all packet information and action is handled inside the kernel. The only aspect

of the PKAP N2d system in user-space is the /proc filesystem status reporting.

Use of PF_RING affords PKAP the same reduction in memory foot-

print and copy count that it provides user-space applications through pfring

and libpcap-ring; however, its use by pkap_thread reduces the copy count

by one additional copy due to direct use of the ring slot memory for the

file->f_op-write() call. This behavior differs from an application’s use of

the user-space pflib library, which copies the data from the ring before it passes

the copy to the application. The design decision to directly use the ring slots

when executing writes was another change encouraged by the profiling used

50

during pilot testing. Contrary to user-space writing, the kernel-space file writ-

ing was less expensive than the in-kernel memcpy() calls used to create copies;

therefore, the PKAP module takes every opportunity to avoid memcpy() calls,

even at the expense of more, and smaller, calls to write(). The design deci-

sion to forgo buffered write() calls is the key difference in memory utilization

between a libpcap-based, user-space application and the the PKAP kernel mod-

ule.

The PKAP main loop, in pkap_thread, is very single-minded. It is sim-

ilar DaemonLogger, a user-space application that is concerned only with re-

trieving packets of interest from the NIC and writing them to pcap-formatted

files on the disk as quickly as possible. The only other task these purist N2d
applications perform is the logic and execution of log file rotation.

As a proof of concept, the PKAP kernel module has no convenient external

control mechanisms. All options are currently hard-coded options that require

source code alteration and re-compilation. Reporting of the status and health

of the ring-buffer is provided by the PF_RING kernel module, and it is this

mechanism that provides insight into the status of the pkap_thread process.

Once key configuration decisions are made in pilot testing, two binary PKAP

modules are created: one for saving pcap log files to a real filesystem, and the

other for saving the pcap log to /dev/null.

51

IV. Methodology

T HIS chapter presents the methodology used to evaluate the performance

of an N2d Network Capture System using the PKAP kernel module com-

pared to traditional user-space applications. The evaluation will use 4 metrics:

CPU utilization, memory usage, dropped-packet rates, and query response de-

lay. Section 4.1 charts out the system boundaries, and Section 4.2 presents the

evaluation methodology for the system. Section 4.3 discusses the services that

are provided by the N2d system, as well as when those services are considered

successful. The workload types and descriptions are presented in Section 4.4,

and Sections 4.6 and 4.7 discuss the system parameters, as well as which ones

will be treated as factors during the evaluation. The remaining sections of this

chapter, Sections 4.8 and 4.9, explains both the evaluation technique and ex-

periment designs used to test, analyze, and interpret the system performance.

4.1 System Boundaries

As depicted in Figure 4.1, the SUT is the N2d Capture System. Though the

N2d capture system provides a relatively straightforward capability, being de-

rived from a general purpose, multitasking, multiprocessing computer system

means that there are are large number of elements to the system of systems.

Therefore, Figure 4.1 will show only those components that have the most di-

rect bearing on the function and performance of the N2d tasks.

The key N2d capture system components are the capture method, the cap-

ture library, the NIC and associated driver, the physical storage type and speed,

the filesystem, and the agent used to retrieve specific captured data at the

behest of external queries. The Component Under Test (CUT) is the capture

method, which is comprised of the interchangeable capture tools: PKAP and

DaemonLogger. The system will be evaluated under specific variations in work-

load and factor manipulation for each CUT option separately.

52

Figure 4.1: Systems Approach Diagram for the NIC-to-Disk Capture System

Workload parameters include the network traffic, external queries for

captured data, and the disk maintenance of log file creation, rotation, and re-

moval. The system parameters include the storage device type, packet filter

count, and capture method (the CUT). Additional parameter details are found

in Section 4.6.

The metrics used in analysis of the system performance are packet drop

rate, CPU load, memory usage, and query delay. Ultimately, the most impor-

tant metrics are packet drop rate and query delay. The rationale for the metrics

and the methods used to obtain and interpret them are covered in greater detail

in Section 4.5.

53

4.2 Evaluation Methodology

Measurement of a real N2d system is used to accomplish the performance

evaluation during the experiments. The measured results are validated using

analytic analysis. As the N2d capture system is a highly interdependent system

of systems, accurate modeling of the system behavior and performance char-

acteristics would be extremely complex. Additionally, a model would require

significant maintenance to account for different hardware or software. Similar

difficulties would exist for simulation of the systems many interrelated sub-

systems.

To evaluate the performance characteristics of a PKAP-enabled N2d sys-

tem, actual performance metrics must be obtained for both the kernel-space

capture capability and an equivalent user-space capability. Representing the

user-space status quo, is DaemonLogger—a tool written for the express pur-

pose of capturing network packets to disk. DaemonLogger uses libpcap to cap-

ture packets and write them to disk in pcap-formatted files, and it manages a

configurable rotation of the files on disk for long-term collection. DaemonLog-

ger typically uses the standard libpcap library; however, for purposes of this

evaluation, it was linked with the PF_RING-enabled libpcap.

The PKAP kernel module was implemented to write files in the pcap-

format and provide a similar functionality for rotating the capture logs. The

primary functional distinction between DaemonLogger and PKAP is the mem-

ory space in which they run. Both will utilize the PF_RING ring buffer,

so the efficiency of the capturing process itself should be identical up to

the point where the capture application actually removes the packet ele-

ment from the PF_RING ring buffer. Both applications then prepend a pcap-

format packet header to each packet and write them to disk—PKAP using the

kernel’s vfs_write() function, and DaemonLogger using the glibc function

fwrite(). The fwrite() function uses buffering by default, since generating

54

fewer system calls with large chunks of data is more efficient than many sys-

tem calls with small amounts of data each time. This buffering behavior was

not implemented in the PKAP module. Though this is another distinction be-

tween the methods, the justification for the difference lies in 1) the goal to use

less memory, and 2) the relatively low cost of calling vfs_write from within

the kernel itself versus across the system call boundary.

Additionally, to ensure the DaemonLogger application could be used as a

control in all trials, slight modifications were made to it to allow it to write to

/dev/null. This option was not available in the original DaemonLogger applica-

tion, nor would the file naming conventions permit filesystem trickery to force

it to work without modifying the application.

4.3 System Services

The N2d capture system provides both internal and external services. The

ultimate utility of the system is that any given subset of stored packets can

be requested from the system and retrieved because they have been accurately

recorded from the network to the system’s storage device. For this external

service to be successful, the N2d system must first provide the internal service

of accurately storing all packets of interest to disk in the proper format.

At a high level, the system is considered to be successful at providing

service if it:

1. Accurately stores packets of interest while incurring minimal losses due

to dropping packets during the capture process

2. Provides adequate processing and disk I/O to respond to queries for the

captured date in a timely manner

This ideal view is useful when considering the system as a whole; however, the

disk-bound nature of packet capture speed requires a more granular concept

of success. The internal service is considered successful when network traffic

55

can be captured to disk at the maximum write speed of the storage device.

Due to the additional Bytes used to prepend the pcap-format packet header to

each captured packet, the data rate will be slightly less to disk than from the

network. This disparity between network data rates and sequential write data

rates is an inverse power relationship—meaning the smallest packets carry

the greatest data rate overhead when writing to disk. The worst case scenario

when 64 Byte packets are filling the network, which requires the storage device

to be capable of writing 130 MB/s to disk for every 100 MB/s received by the

NIC.

Given an N2d capture system with a storage device that can sustain a

sequential write speed of 70 MB/s on a network where the average packet size

is 768 Bytes, the maximum theoretical data rate the host system could receive

before dropping packets would be 545.6 Mbps (68.2 MB/s). The theoretical data

rate would be reduced to 424 Mbps (53 MB/s) if the average packet size is 64

Bytes.

Additionally, the maximum theoretical sequential write speed is only ap-

plicable when no other read or write operations are being accomplished on the

storage device. Queries for data will impact performance of the recording capa-

bility by introducing disk I/O contention.

The choice of storage device will greatly impact the ability of the system

to be successful at a given network load.

4.4 System Workload

The workload of the SUT consists of the network traffic, the queries for

data, and the disk maintenance overhead for packet log rotation. The network

traffic characteristics is varied by both size and data rate during the perfor-

mance evaluation, and the query workload is only introduced in the final ex-

periment. The disk maintenance workload is consistent between CUT options

56

and held to the initial configuration throughout all experiments after pilot test-

ing.

4.4.1 Network Traffic.

4.4.1.1 Characteristics. Network traffic is the principle workload

for an N2d system. The size and frequency of packets determine the ultimate

stress of the packet capture, storage, and retrieval functions. The network

workload is a synthetic workload produced by the pktgen Linux kernel mod-

ule. Pktgen is a configurable User Datagram Protocol (UDP) bit-spitter which

was designed to test the TX and RX capabilities of NICs and their associated

drivers. This method of traffic generation is sufficient for testing N2d systems

for the following reasons:

1. The packet payload is not analyzed, so payload and protocol details above

L4 only matter for packet size

2. The PF_RING mechanism removed the sk_buff from the kernel TCP/IP

stack prior to the point where a distinction would be made between the

way a given protocol is handled

3. The filtering capability used in the PF_RING is a simple Access Control

List (ACL), where the imposed load of execution is not affected by state or

protocol type

As seen in Figure 4.2, the traffic generator is run on a test machine connected

via a single Gigabit Ethernet port. This setup can saturate a Gigabit Ether-

net link until the average packet size drops below 700 Bytes. Multiple pktgen

systems are required to fully saturate a Gigabit Ethernet link with small pack-

ets. A single traffic generation system should produce sufficient traffic types

and rates for initial evaluation of the PKAP kernel mode capture capability,

since the N2d test system stores packets to a single Serial Advanced Technology

Attachment (SATA) II hard drive with a maximum sequential block write speed

57

of 82 MB/s, as determined by the bonnie++ utility—a standard user-space test

tool for hard drive performance. This maximum speed is considered to be the

highest guaranteed speed that a user-space application can stream data to disk

sequentially. Additional traffic generation capabilities would be required if the

test system utilized high-end storage devices, such as SANs, Network Attached

Storage devices (NASs), or directly attached Redundant Array of Innexpensive

Disks (RAID) arrays.

To test beyond the limited data rate of a single SATA disk, a portion of

the testing scenarios will be repeated while writing to /dev/null. This will

essentially remove the bottleneck of the available hardware storage devices to

determine comparable performance and/or failure levels at extremely high data

rates.

The network workload is varied in both size and data rate to exercise

the chain of custody for the bits from the NIC to the disk. While bitrate is a

significant factor in the network workload, the rate of packets per second is

actually more significant to CPU utilization than the bitrate of the network—

specifically, higher quantities of small packets filling a given bitrate provide

significantly greater workload than lower quantities of large packets filling the

same bitrate. Three size setting are used to evaluate behavior of the CUT: min,

max, and random. Min test sets transmit only 64 Byte frames to evaluate how

the CUT impacts performance of the SUT when the chain of custody spends

more time setting up the handling of a packet buffer than actually transferring

from one memory location to another. Max test sets transmit only 1500 Byte

frames to evaluate the CUT impact on the SUT when the principle task of the

system is to move the packet data, with minimum resources spent on setting up

the movement. Random test sets transmit a normal distribution of packet sizes,

ranging from 64 Byte to 1500 Byte frames. The random frame sizes produce

an average frame size of 782 Bytes, and the single pktgen generator can fill

the network link to 950 Mbps with this setting. The purpose is to evaluate the

58

performance of the system when the principle load of capturing the packets is

balanced between the overhead of setting up packet movement and the actual

copying of data from one memory location to another.

4.4.1.2 Bitrates. The data rate of packets can be altered specifi-

cally by adapting the pktgen delay. This nanosecond-level adjustment of delay

between packets alters the throughput of the network by imposing an artificial

Inter-Packet Gap (IPG) on the network link. The effect of the IPG on the data

rate is moderately accurate. It would be more accurate if a real-time Linux

kernel with high resolution timer were utilized; however, the subtle variations

of 2-5% in transmission rates are acceptable. Additionally, since each test con-

figuration will be accomplished five times, the variation could provide a more

representative understanding of CUT performance under real-life workloads.

4.4.1.3 Duration. Pilot tests reveal that trials of 5 minutes are

sufficient to bring the SUT to a steady state at even the lowest trial bitrates.

Bringing the system to the steady state is important for valid analysis of the

collected metrics. The steady state refers to bringing the N2d capture system

to the point where the temporal surge capability provided by the Linux buffer

cache is not a factor in the performance of the system and the portions of the

data required to satisfy the queries for data are not likely to be able to reside

in the buffer cache. If the buffer cache can satisfy a significant portion of the

storage or query tasks, the resultant data value is less likely to represent real-

world performance of long-term N2d capture services.

4.4.2 Data Queries. The workload provided by data queries requires

both the creation of distinguishable packets to search for and the query agent

to accomplish the search and response.

59

4.4.2.1 Query Object Creation. The query objects (marked pack-

ets) are transmitted over the network with specific address ranges unique to

the query workload. These specially addressed packets are sent once every

second so that they are interspersed within the general network traffic. In

and of themselves, these marked packets provide no noticeable workload in-

crease to the system; however, the SUT must search for these marked packets

in the packet data it has stored. This workload is considerable given that trials

produce between 4 GB and 40 GB of network data on disk. The marked pack-

ets are identical to the general background traffic in all ways but the Internet

Protocol (IP) addresses.

4.4.2.2 Query-Response Workload. To represent the external re-

quests for data that an N2d system would receive in a real-world situation, the

SUT runs a query script that initiates periodic queries for packet data. This

script uses TCPDUMP to look through all captured data for the marked pack-

ets and to copy the packets to a temporary query response file.

The impact of the query workload to the system is multifaceted, in that

the SUT CPU resources are being consumed by an additional task, and the

storage device can no longer be dedicated to writing alone. The disk must sat-

isfy both the write and read demands, significantly impacting both the write

performance and dropped packet rate due to contention of disk I/O.

4.4.3 Disk Maintenance. The principle component of the disk mainte-

nance is the log rotation performed by the CUT. Regardless of whether the test

CUT is the PKAP module or the DaemonLogger application, the log rotation

logic is configured to behave identically. This configuration allows each CUT to

create pcap log files up to 1 GB in size, after which a new log file is created. The

CUTs are configured to keep ten log files. Once the tenth log file fills, the oldest

1 GB file is deleted and a now-10th file is created. File creation and deletion

60

provide a periodic workload for the SUT filesystem. Though the workload is not

precisely measurable, the consistent configuration of both CUTs ensures that

the workload is the same throughout testing. This allows disk maintenance to

be a parameter (not a factor) during performance analysis.

4.5 System Performance Metrics

The N2d system must provide reliable answers to queries for captured data

with a high probability of success. For this to occur, the system must capture

packets and stored them to disk with the lowest probability of dropped packets.

To be successful at both capturing the packets and providing timely responses

to queries for the data, the N2d system must operate at the highest possible

efficiency—processing packets from the NIC to the disk with as little overhead

as possible. To evaluate whether the PKAP CUT method provides a higher

probability of satisfying the system services, the following metrics are defined:

• Dropped Packet Rate

• CPU Utilization

• Memory Utilization

• Response Delay for Data Query Responses

4.6 System Parameters

System parameters are the properties of the SUT that will affect its per-

formance. As a system of systems built on a general purpose operating system,

the complete list of parameters would be staggering. Utilizing subject matter

expertise and the initial findings during the first phase of experiments, the list

was narrowed down to those things which will most significantly affect the per-

formance of the SUT’s ability to perform its services. System performance is

also affected by workload parameters. The following sections list and describe

the system parameters for the SUT.

61

4.6.1 Capture Method. The CUT selection determines whether the

packets must pass through user space or can remain in the kernel during their

conveyance from the NIC to the disk inside the SUT. Selection options are:

1) an existing user-space capture capability, DaemonLogger, or 2) the proof of

concept produced in the course of this research, the PKAP kernel module. Both

methods use the same capture library to both retrieve packets from the NIC

and filter them for interest, and both methods store to the same disk configura-

tion using the Linux kernel’s Virtual Filesystem Service (VFS). The differenti-

ation between CUTs is the location of the capture logic in the SUT.

4.6.2 Disk Device Selection. The disk configuration greatly impacts

the performance of the SUT to successfully provide its services. The disk con-

figuration directly affects the theoretical limit of network capture, since an N2d
system can only sustainably capture network traffic at a data rate commen-

surate with the maximum block sequential write speed of the storage device

being written to. During the evaluation, the storage device options will be 1)

a single SATA II hard drive formatted to Extended Filesystem version 4 (ext4)

and capable of 65 MB/s, or 2) the /dev/null device.

The ext4 file system was selected due to existing benchmarks that list ext4

sequential write speeds as superior to all other current Linux filesystem [23].

This selection is verifiable using the bonnie++ hard drive performance test

utility. During recent tests of Linux filesystem performance, the ext4 filesystem

bested ext3, XFS, and ReiserFS by 10-40% in large file streaming writes [23].

4.6.3 Filtering. Filtering is a system parameter for an N2d system.

The filtering is the intentional packet discarding by pre-configured rule set.

The SUT is capable of filtering packets, regardless of CUT selection. As stated

in Chapter IV, the ability to perform filtering was a key factor of the design

process; however, all filtering is disabled during this performance analysis. The

62

filtering process behaves the same for both CUT selections and provides no

insight into the impact of the CUT selection on SUT performance.

4.6.4 System Specifications. The hardware specifications for the host

system impacts the performance of the N2d capture application. Increased per-

formance of the CPU, memory, storage system, and NIC can all directly influ-

ence the performance of the SUT; however, these changes in performance are

outside the scope of this research. The specifications for the test system are

held constant throughout testing.

4.7 System Factors

This section presents the selection of system and workload parameters to

be used as factors in during the evaluation. These factors were selected through

a combination of expert knowledge and pilot studies. Factors are varied differ-

ently during the three experiments. Experiments 1, 2, and 3 are detailed in

Section 4.9.

The factors in Experiment 1 are varied to compare the impact of CUT se-

lections on the performance of the SUT under controlled workload and system

configurations using a real storage device and requiring no queries for cap-

tured data. The factors in Experiment 2 are varied similarly to Experiment 1;

however, the virtual device /dev/null is used in the attempt to observe the

behavior of the CUT selection when disk I/O is not a factor. The factors in Ex-

periment 3 are varied to determine the impact of the query workload on capture

performance, which requires the captured packets to be stored to a real storage

device. Sections 4.7.1 to 4.7.2 outline the factors selected from the system and

workload parameters and each of the levels used during the experiments.

4.7.1 Capture Method. The capture method is the CUT. The capture

method determines whether the packets must traverse user-space or not when

63

capturing packets to disk, and the analysis of the impact of this factor is the

principle goal of this thesis.

4.7.1.1 PKAP Kernel Module. The PKAP kernel module is the

proof of concept for a kernel level N2d capture capability. PKAP is a dynamically

loadable Linux kernel module that implements a background thread. Greater

detail of the PKAP design is in Chapter III.

4.7.1.2 DaemonLogger. DaemonLogger serves as a baseline func-

tionality and performance threshold for user-space N2d capabilities. The Dae-

monLogger application is a user-space, libpcap-based packet capture applica-

tion written by Martin Roesch—author of the Snort Intrusion Detection Sys-

tem. DaemonLogger provides a very efficient and purposeful N2d functional-

ity, and nothing else. The straightforward nature of the application made it a

strong candidate for representing a user-space capture application.

DaemonLogger was compiled against the libpcap-1.0.0-ring library, which

is the PF_RING-enabled version of the standard libpcap library almost univer-

sally used to implement user-space network sniffing applications. Since the

DaemonLogger application retrieves the packets from the same ring buffer im-

plementation as the PKAP kernel module, the retrieval process is identical up

to the point of the CUT. Additionally, DaemonLogger uses the fwrite() call

(via libpcap’s pcap_dump() function); fwrite() uses the write() syscall,

which is handled by the vfs_write() function in the Linux VFS. The VFS

transparently passes handling of this call to the filesystem’s write() file oper-

ation. As discussed in Section 3.2, the PKAP kernel module uses the write()

file operation directly. This guarantees that the storage process is identical

from the point that the packet data is passed to the kernel’s filesystem write()

file operation to when it is written to disk. Due to careful selection of applica-

tion and configuration, the principle difference between CUT selections is iso-

64

lated to how the application calls the write file operation of the filesystem the

log file is stored in.

4.7.2 Storage Device. Most trials will be accomplished using the real

hard drive in the N2d system; however, to extend testing beyond the ability of

a single SATA II hard drive sequential write speed, certain trials will use the

/dev/null device. The details of the storage device options are as follows:

• Real Disk:

– SATA II

– 7200 RPM

– 16 MB buffer

– Connected to an Intel® ICH9M-E SATA RAID Controller

– Bonnie++ tested to have a maximum sequential block writing rate of

65 MB/s

• /dev/null

– Virtual device on Linux that:

* Immediately discards all data written to it

* Always reports SUCCESS for any write

* Always reports End Of File (EOF) for any read

– An educated trial indicates that the performance of the /dev/null de-

vice on the N2d system is capable of a sequential block writing rate

between 2.6 GB/s and∞

* No known benchmarking utilities offer the ability to test a device

that can’t be read from

* The upper bound was found by timing the copy of 4 GB from

/dev/zero to /dev/null using dd

65

· # time dd if=/dev/zero of=/dev/null bs=4096

count=1048576

· The result from time was 0 seconds

* The lower bound was found using the command # hdparm -t

/dev/zero

· It is assumed that if the VFS can read a CPU-bound virtual

device at this rate, then it is likely that the VFS can write to

a CPU-bound virtual device at a similar rate

– Trials using /dev/null cannot be verified nor queried for, since the

data is immediately discarded

4.7.3 Network Workload.

4.7.3.1 Packet Size. Though the key service of the N2d system

is to provide the requested packet data to the requesting party, the most sig-

nificant workload of the system is the copying and formatting of packet data

from the NIC to the storage device. Packet size is one of the most significant

contributors to the stress of a system—potentially even more so than the bi-

trate. Network infrastructure and devices typically use 64 Byte packets for

stress testing. Though a network pipe filled with nothing but 64 Byte packets

is not likely to be found in operational network use, it provides a worst-case

scenario that network developers need to ensure proper functionality during

strange and unknown circumstances in the field. During the experiments the

packets sizes will be controlled to be one of the following:

• Min Size: 64 Byte frames

• Max Size: 1500 Byte frames

• Random Size: A randomly selected, normal distribution of packet sizes

ranging from 64 to 1500 Bytes

66

4.7.3.2 Bitrate. As with packet size, the bitrate of the traffic is

one of the two most significant workload sources for the SUT. In order to eval-

uate the system in times of low stress, tipping point stress, and theoretically

unlimited stress, the bitrate will be controlled to the following levels:

• Level 1 Bitrate: 100 Mbps (~12 MB/s): Low end testing that to explore the

CUT impact on the SUT when the load is light

• Level 2 Bitrate:

– [64 Byte Packet Size] 140 Mbps (~18 MB/s): below the data rate of the

hard drive, but close to the processing limits for the packet processing

routines to handle the packets per second (pps) associated with this

bitrate

– [1500 Byte and Random Packet Sizes] 650 Mbps (~82 MB/s): right at

the maximum data rate for the hard drive in the test N2d system, as

determined by pilot testing

• Level 3 Bitrate:

– [64 Byte Packet Size] 200 Mbps (~25 MB/s): below the data rate of the

hard drive, but moderately above the processing limits for the packet

processing routines to handle the pps associated with this bitrate

– [1500 Byte and Random Packet Sizes] 700 Mbps (~88 MB/s): moder-

ately above the maximum data rate for the hard drive in the test N2d
system, as determined by pilot testing

• Level 4 Bitrate:

– [64 Byte Packet Size] 340 Mbps (~43 MB/s): below the data rate of

the hard drive, but well beyond the processing limits for the packet

processing routines to handle the pps associated with this bitrate (the

pps rate is at the maximum for the switch in the test environment,

and it requires 2 pktgen systems to create)

67

– [1500 Byte and Random Packet Sizes] 980 Mbps (~120 MB/s): well

beyond the maximum data rate for the hard drive in the test N2d
system

Experiment 3 is intended to more closely represents the real-world workload of

an N2d system, so the packet sizes are randomly selected between 64 and 1500

Bytes. The distribution of the packet size selection is normal, and the average

packet size is 782 Bytes; thus, the network workload levels for experiment 3 are

categorized by bitrate alone—not packet size. The bitrate levels for experiment

3 are selected to provide increased granularity at lower network bandwidths to

determine the effect of the query workload on the SUT. The following are the

bitrate levels for experiment 3:

• Level 1 Bitrate: 100 Mbps (~12 MB/s)

• Level 2 Bitrate: 225 Mbps (~28 MB/s)

• Level 3 Bitrate: 350 Mbps (~32 MB/s)

• Level 4 Bitrate: 575 Mbps (~72 MB/s)

• Level 5 Bitrate: 650 Mbps (~82 MB/s)

• Level 6 Bitrate: 700 Mbps (~88 MB/s)

• Level 7 Bitrate: 975 Mbps (~122 MB/s)

For all experiments, network speeds producing storage speed requirements be-

yond the capacity of the storage device provides insight into the failure mode

characteristics of the CUT.

4.7.4 Query Workload. The query workload is either applied or absent

within a given trial. The query workload rate is not altered for trials that

include a query workload.

68

Figure 4.2: Diagram of the Evaluation Environment

4.8 Evaluation Technique and Environment

Evaluation of the SUT is conducted through the measurement of a real

N2d capture system in an environment that is representative of real-life net-

work traffic. Analytical Modeling and Simulation for the system-of-systems

would be both complex and unreliable. Additionally, the development of the

PKAP proof of concept provides greater flexibility to adapt the functionality to

new environments or platforms.

4.8.1 Evaluation Environment. As depicted in Figure 4.2, the environ-

ment used to evaluate the SUT is a small network comprised of the following

devices and functionality:

• Dell PowerConnect 2808 Managed Gigabit Switch: An 8 port Gigabit

switch, configured to provide interface statistics via Simple Network Man-

agement Protocol (SNMP) to software on the monitoring system to provide

hardware packet counts and rates. This switch provides the test network

data path.

69

• Linksys WRT54GS Wireless Router: This wireless access point provided

the out-of-band control network for the test environment, allowing the

automation scripts to orchestrate each test run without impacting the test

network data.

• Traffic Generator: The Dell Precision M6300 runs Fedora 11 and the pkt-

gen kernel module for generating traffic. The system has a Gigabit Ether-

net port and an Intel® Core™2 Duo T9500 @ 2.6GHz, and it is capable of

saturating the 1 Gigabit per second (Gbps) connection when the average

packet size is sufficient (above 700 Bytes)

• External Monitoring System: The Dell Optiplex FX160 runs Fedora 11

as the operating system, and it runs the Net-SNMP scripts to monitor

the interface statistics of the Gigabit Switch; these statistics will be used

to validate the network statistics from the Traffic Generator and SUT.

Additionally, the monitor system is tasked as a supplemental pktgen traf-

fic generator—used to boost the bitrate of the 64 Byte packet, 340 Mbps

trial, and to send the specially marked packets used to provide the query

workload. This system also runs a Network Time Protocol (NTP) server to

provide a synchronized clock between all test systems. The synchronized

clock allows data gathered by each system to be compiled together; which,

in turn, enables batches of test sets to be scheduled in long runs to satisfy

the significant number of iterations that are required to evaluate the SUT

under the levels of factors listed in Section 4.7.

• N2d Capture System (the SUT): The Dell Latitude E6500 runs Fedora 11

and the CUT. Depending on the trial, the CUT will either be the PKAP

kernel module or the DaemonLogger user-space service. The pertinent

system specifications are as follows:

– Intel® e1000-based Gigabit Ethernet adapter

– Intel® Core™2 Duo T9600 @ 2.8GHz

70

– 8 GB RAM

– Internal 2.5 inch SATA System Drive

– External 3.5 inch External Serial Advanced Technology Attachement

(eSATA) Capture Drive (Seagate ST3500620AS)

– Fedora Core 11 (2.6.30.10-105.fc11.x86_64 Symmetric

Multiprocessing (SMP))

– PF_RING version 4.1.0 Revision 3982 (plus the modifications to

share memory inside the kernel with PKAP)

– libpcap-1.0.0-ring (distributed with PF_RING 4.1.0)

– PKAP kernel module version 1.0.0

4.8.2 Evaluation Technique. This section describes the methods used

to collect the data from each trial and the process used to analyze the data.

The metrics are used to compare the performance of the new design to that

of the traditional approach—that is, to compare the affect of the PKAP kernel

module to the SUT performance with the DaemonLogger application. Each

trial set for the experiments discussed in Section 4.9 provides a specified factor

level combination. Each combination of factors presents a load-level for which

the metrics between one CUT option can be directly compared to the other.

4.8.2.1 Dropped Packet Rate. Though not exclusively, the packet

drop rate is one of the most significant metrics for an N2d system. Any suc-

cess in the remaining metrics are largely voided if the probability of successful

packet capture to disk is decreased. During each trial, the traffic generator will

send sufficient packets to ensure that the trial duration is at least 300 seconds

(approximately 5 minutes). The packet drop rate is related to the probability of

successful packet capture by the following:

71

p(drop) = 1− P (capture), where P (capture) =
Number of Packets Stored

Number of Packets Transmitted
(4.1)

The packet drop rate is measured by comparing the number of packets

transmitted by pktgen to the number of packets stored to disk by the CUT.

Following the matrix of test parameters, each test set will be run 5 times. The

number of trials for each test configuration is initially established during pilot

testing. The SUT is a system of systems, based on a general purpose operating

system; multiple trials are required to provide a reasonable confidence interval

during slight variations of overall system resource utilization. Pilot testing

indicates that 5 trials per test configuration is sufficient, and that greater than

5 trials provide no reduction of the 95% confidence interval range.

4.8.2.2 CPU Utilization. The N2d system load is directly im-

pacted by the network workload, and this data will be captured during each

trial for comparisons to be made between CUT options. CPU utilization is gath-

ered by the pidstat utility, which is part of the systat suite of system status

monitoring tools. The pidstat command will be configured to track the work-

load of the CUT process or kernel thread, collecting the data every 5 seconds

for the duration of the test.

The average CPU utilization for a given set of factors is the primary CPU

metric of interest; however, anecdotal use of the changes over time could as-

sist in determining the source of other potential bottlenecks, changes in traffic,

unexpected background tasks, etc..

4.8.2.3 Memory Utilization. Memory utilization is tracked using

the same methods as CPU utilization.

72

Table 4.1: Table of Factor Configuration Sets: Listing each configuration set for
Phases 1-3, all sets contain 5 trials for each CUT option

P1 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Pkt Sz min max rnd min max rnd min max rnd min max rnd
Mbps 100 100 100 140 652 650 200 714 700 340 985 975

P2 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Pkt Sz min max rnd min max rnd min max rnd min max rnd
Mbps 100 100 100 140 652 650 200 714 700 340 985 975

P3 S1 S2 S3 S4 S5 S6 S7

Pkt Sz rnd rnd rnd rnd rnd rnd rnd
Mbps 100 225 350 575 650 700 975

4.8.2.4 Query Delay. During the Experiment 3, a reduced factor

set is used to run the CUT options against both network and query workloads.

The above metrics continue to be used; however, metrics for the query-response

cycle are additionally monitored and analyzed. The query-response metrics of

interest are: the query-response cycle delay in seconds, the number of queries

successfully completed, and the percentage of the marked packets found.

4.9 Experiment Design

There are four experimental phases. The first phase is pilot testing, with

the goal of determining fixed parameters, variable factors, data collection meth-

ods, and network infrastructure reliability and settings. The second phase is

focused on determining the performance of CUT selections under typical and

atypical loads while providing the service of N2d full-packet capture to a real

storage device. The third phase is executed similarly to the first phase; how-

ever, the real storage device is replaced by the /dev/null virtual device. The

third phase uses typical and atypical loads to determine the performance of

CUT selection when the SUT is providing the second service—response to calls

for data.

73

4.9.1 Experiment 0: Pilot Testing. This section describes the pilot

testing purposes and methods. The pilot testing is useful during development

of both the CUT options as well as the test environment.

• Configurations: Series of tests are conducted to determine reasonable con-

figuration settings for PF_RING slot count and filesystem formatting and

formatting options. These tests events assisted in proper configuration of

the SUT and test environment.

• Network Architecture: Evaluations of several packet generation technolo-

gies are evaluated to ensure that the system can be fully exercised and

that the test environment can be both controlled and monitored. Key de-

cisions include: determining whether a switch or cross-over cable would

be used, whether testbed control would occur in-band or out-of band, and

which hardware platforms of those available would best fulfill the duties

of the SUT, traffic generator, and monitor.

• Traffic Generation: Series of tests are conducted to determine configura-

tion options of the packet generation tool to ensure that the process is

controllable, reliable, and repeatable. Establish a configuration file for-

mat to identify traffic generation speeds, sizes, addresses, and duration

for each given trial set.

• PKAP Profiling: Once the testbed is capable of generating network traf-

fic, trial runs are used to provide a workload to profile the PKAP kernel

module code using the oprofile test suite. This is accomplished toward

the end of the prototype development phase.

• Measurement Tools: Once the testbed is capable of generating network

traffic, many iterations of trial runs are utilized to assist in evaluation

of measurement tools to acquire data from each of the systems on the

testbed. These tools include and scripts utilities to monitor the CUT

process metrics, the status of the PF_RING ring buffer health and drop

74

count, the packets transmitted by the traffic generator, and the packets

confirmed by the switch to have been sent to the SUT. All activity logged

must be accompanied by a timestamp that is based on a synchronized

clock between all three testbed systems.

• Trial Determination: Cursory tests are accomplished to identify:

– A rough estimate of the variability of the results to determine the

initial trial count

– Applicable bitrate levels to observe requisite characteristics of the

SUT

– Duration of trials to ensure SUT has reached a steady-state

4.9.2 Experiment 1: Packets to Disk. As depicted in Table 4.1, Ex-

periment 1 has 24 distinct test configurations (2 CUT options * 12 Trial Sets).

The 24 test configurations each receive sufficient packets to bring the capture

system into a steady state for the trial period. Each trial set contains 5 in-

dependently accomplished trial runs for each CUT, using the same SUT and

environment configurations. For Experiment 1, the testbed produces, trans-

mits, receives, and writes to disk roughly 6.7 billion packets carrying nearly

2.5 TB of network traffic over the course of 10 hours.

4.9.3 Experiment 2: Packets to /dev/null. As depicted in Table 4.1,

Experiment 2 has 24 distinct test configurations (2 CUT options * 12 Factor

Configuration Sets). The only change between Experiment 1 and Experiment 2

is that the storage destination of the packets is /dev/null, rather than a real

disk. As in Experiment 1, each trial set contains 5 independently accomplished

trial runs for each CUT, using the same SUT and environment configurations.

For Experiment 2, the testbed produces, transmits, receives, and writes to disk

roughly 6.7 billion packets carrying nearly 2.5 TB of network traffic over the

course of 10 hours.

75

4.9.4 Experiment 3: Impact of Data Queries. As depicted in Table 4.1,

Experiment 3 has 14 distinct test configurations (2 CUT options * 7 Trial Sets).

The 14 test configurations each receive sufficient packets to bring the capture

system into a steady state for the trial period. Each trial set contains 5 in-

dependently accomplished trial runs for each CUT, using the same SUT and

environment configurations. For Experiment 3, the testbed produces, trans-

mits, receives, and writes to disk roughly 1.6 billion packets carrying nearly

1.5 TB of network traffic over the course of 6 hours.

Additionally, the monitor system runs a special version of the pktgen traf-

fic generator that transmits specially addressed packets once every second for

275 seconds—most of each of the ~300 second trial durations. These packets

become interspersed within the network traffic load provided by the spitter

test system. In and of themselves, these marked packets provide no notice-

able workload increase to the system; however, the SUT must search for these

marked packets in the packet data it has stored. This workload is considerable

given each trial can write between 4 GB and 40 GB to disk.

During Experiment 3, the SUT runs a query script that initiates queries

for packet data, starting 60 seconds into the trial until the end of the trial.

This script uses TCPDUMP to look through all captured data for the marked

packets and to copy the packets to a temporary query response file. The script

then reports the number of marked packets found in the captured data and

the number of seconds required to accomplish the query-response cycle. Once

one cycle is complete, the script will wait one second and run again. The task

becomes more difficult for the SUT as the trial progresses, since more data is

available to search through.

The query workload impact on the system is multifaceted, in that the SUT

CPU resources are being consumed by an additional task, and the storage de-

vice can no longer be dedicated to writing alone. The disk must satisfy both the

76

write and read demands, significantly impacting both the write performance

and dropped packet rate. It is for these reasons, that additional lower-end bi-

trate levels were included in this phase of experiment. The metrics of interest

for the query-response cycle are: the query-response cycle delay in seconds, the

number of queries successfully completed, and the percentage of the marked

packets found. Once the workload begins to negatively impact the dropped

packet rate, the reliability of the query finding all marked packets is question-

able due to the rationale that some of the marked packets may be among those

dropped. Over sufficient quantities of time, the packet drop rate and missed

mark rate should converge to the same percentage.

4.9.5 Methodology Summary. This chapter discusses the methodol-

ogy used to evaluate the performance of the N2d capture system under various

workloads and two CUT options. Experiments 1 and 2 evaluate key internal

characteristics of the SUT performance by isolating the workloads and system

factors. Experiment 3 evaluates the key external characteristics of the SUT by

applying the query workload during the test. All experiments evaluate the im-

pact of CUT selection to the overall SUT performance. Statistical tests are then

used to analyze the comparative effectiveness of each CUT option to provide N2d
services under a various workloads.

77

V. Analysis

T HIS chapter presents and analyzes the results of the experiments as de-

scribed in Chapter IV. Sections 5.1 through 5.3 discuss the results for the

system performance metrics and behavior of the system in light of the met-

ric data. Finally, an overall analysis of the experimental data is presented in

Section 5.4.

5.1 Results and Analysis of Experiment 1

Experiment 1 gathers system metrics for each CUT option of the SUT,

while storing the packet capture data to a real storage device. This experiment

measures performance data for the capture and storage process alone; no data

queries occurred during this phase of testing. The metrics for Experiment 1

are categorized by trial set. There are 12 trial sets, each representing 5 inde-

pendent trials for various combinations of bitrate and packet size. Rather than

exploring the metrics for each trial set independently, Section 5.1.1 presents an

overview of the key results for the experiment, and the following sections detail

characteristics of interest.

5.1.1 Experiment 1 Overview. The three graphs in Figure 5.1 sum-

marize the key metrics for all trial sets where packet sizes are randomized.

Of the three options for the packet size factor, randomized sizing is the most

representative of standard Internet traffic. Trial sets using minimum packet

size (64 Bytes) provide insight into the behavior of the system with a worst-

case overhead to data delivery ratio, and trial sets with maximum packet size

(1500 Bytes) provide insight into the behavior of the system with a best-case

overhead to data delivery ratio.

Inclusion of the results for trial sets with minimum sized packets, in-

troduces too much confusion to accurately represent the behavior of the SUT.

Figure 5.2 shows the impact of packet size to the CPU utilization and packet

78

Plot of Means: Dropped Packet Rates

Bitrate Level

%
 D

ro
pp

ed
 P

ac
ke

ts

0
10

20
30

40

L1 L2 L3 L4

●

●
●

● CUT Selection

● dl
pkap

Plot of Means: CPU Utilization

Bitrate Level

%
 C

P
U

 U
til

iz
ed

35
40

45
50

55
60

L1 L2 L3 L4

●

●

●

●

CUT Selection

● dl
pkap

Plot of Means: Memory Utilization

Bitrate Level

M
B

 o
f M

em
or

y

52
54

56
58

60
62

L1 L2 L3 L4

● ● ● ● CUT Selection

● dl
pkap

Figure 5.1: Experiment 1: Summary Graphs of Key Metrics: Whiskers repre-
sent a 95% confidence interval

79

drop rate. The whiskers of the graphs show the range for a confidence interval

of 95%. At bitrate level 3, a statistical difference does exist between trials with

a random size distribution and trials with maximum sized packets; however,

the following traits are clearly seen:

1. Trials with maximum size and random size packets behave similarly in

packet loss and CPU characteristics

2. Trials with minimum packet size differ noticeably in both packet loss and

CPU characteristics

5.1.2 Packet Drop Rate. Outside of level 1 bitrates, where both CUT

options are fully capable of zero packet loss, the PKAP kernel module packet

drop rate is lower than the DaemonLogger user-space application. Table 5.1

displays the results of a two-variable t-test performed on the packet drop rate

for each of the 4 distinct bitrate levels, factored by CUT selection.

H0:p(PktDropRatePKAP) = p(PktDropRateDL)

H0:p(PktDropRatePKAP) < p(PktDropRateDL)

The table indicates that the null hypothesis should be rejected for every

bitrate level that includes dropped packets. The PKAP kernel module is ca-

pable of capturing more packets to disk than the DaemonLogger user-space

application. Using additional data collected during the experiment, Figure

5.3 graphically displays the difference between the number of KiloBytes per

second (KBps) written to disk by each CUT during the experiment. Due to

the multiple dependencies of an N2d capture system, the actual data write rate

varies as the network load changes; however, the data shows on average that

the kernel-space implementation is capable of writing 15-20% more KBps disk

than the user-space application, with a 95% confidence interval.

80

Plot of Means: Packet Size Influence on Dropped Packet Rate

Bitrate Level

%
 D

ro
pp

ed
 P

ac
ke

ts

0
10

20
30

40

L1 L2 L3 L4

●

●

●

● Packet Size

● max
min
rnd

Plot of Means: Packet Size Influence on CPU Utilization

Bitrate Level

%
 C

P
U

 U
til

iz
ed

30
40

50
60

70
80

90

L1 L2 L3 L4

●

●

● ●

Packet Size

● max
min
rnd

Figure 5.2: Experiment 1: Packet Size Impact: Depicts the impact of packet
size in both CPU utilization and Dropped Packet Rate

81

Table 5.1: Experiment 1 Hypothesis Testing of Dropped Packet Rate

Alternative Hypothesis
(95% Confidence

Interval)

Scope estimate t-ratio df p-value

p(PktDrpRatePKAP) <

p(PktDrpRateDL)

Exp 1 0.088552 19.0161 7473.161 4.45e-79

p(PktDrpRatePKAP) <

p(PktDrpRateDL)

Lvl 1 0 N/A N/A N/A

p(PktDrpRatePKAP) <

p(PktDrpRateDL)

Lvl 2 0.156176 22.65842 589.7446 1.53e-82

p(PktDrpRatePKAP) <

p(PktDrpRateDL)

Lvl 3 0.084359 5.605101 301.2780 2.35e-8

p(PktDrpRatePKAP) <

p(PktDrpRateDL)

Lvl 4 0.061188 7.545896 625.5938 7.96e-14

Plot of Means: KBps Written to Disk

Bitrate Level

K
B

ps

10
00

0
30

00
0

50
00

0
70

00
0

L1 L2 L3 L4

●

●
● ●

CUT Selection

● dl
pkap

Figure 5.3: Experiment 1: KBps Written / Bitrate Level: Whiskers represent a
95% confidence interval

82

5.1.3 CPU Utilization. As Figure 5.1 summarizes in the CPU Utiliza-

tion graph, the original alternate hypothesis that a kernel-mode N2d application

would reduce CPU utilization appears to be shown false.

H0:p(CPUpkap) = p(CPUDL)

HA:p(CPUpkap) < p(CPUDL)

Table 5.2 shows the results of a two-variable t-test performed on CPU

utilization and CUT selection for each of the 4 distinct bitrate levels. The tables

indicate that the inverse of the original alternate hypothesis is valid for all

cases but bitrate level 3, where there is insufficient evidence to reject the null

hypothesis. Though this metric alone indicates a failure of the PKAP kernel

module to achieve one of its objectives (a reduction in CPU Utilization), Section

5.1.5 analyzes the relationship between metrics and provides insight into the

ultimate effect on the SUT.

5.1.4 Memory Utilization. The memory utilization graph in Figure 5.1

depicts the measurable memory utilization throughout all experiments. PKAP

utilizes 52 MB of memory, and DaemonLogger utilizes 62 MB of memory; this

does not vary with packet size, bitrate, or any other runtime variable. The use

of the PF_RING ring buffer, sized upon initialization, makes up the majority of

the memory utilized by either CUT option. Both CUT options used PF_RINGs

that were identically initialized, and they both experience the same changes in

memory usage when the snaplen or the number of ring slots is changed. Out-

side ring memory consumption, PKAP saves memory by not buffering writes to

disk and not copying the data from the ring to use it.

Section 3.1.1 states that one objective for the PKAP proof of concept is to

reduce memory utilization, and Section 4.5 lists memory utilization as a system

metric. The objective drove design decisions to reduce memory footprint. The

memory utilization of PKAP is consistently 16% less than of DaemonLogger,

83

Table 5.2: Experiment 1 Hypothesis Testing of CPU Utilization: The first table
provides clear evidence that the null hypothesis cannot be rejected,
while the second table shows that the inverse alternate hypothesis
is valid for all but bitrate level 3, with a 95% confidence interval

Original Alternative
Hypothesis (95%

Confidence Interval)

Scope estimate t-ratio df p-value

p(CPUPKAP) <

p(CPUDL)

Exp 1 -7.8496 -11.8092 2179.89 1

p(CPUPKAP) <

p(CPUDL)

Lvl 1 -6.8988 -7.6231 582.1569 1

p(CPUPKAP) <

p(CPUDL)

Lvl 2 -16.7715 -13.9820 614.6536 1

p(CPUPKAP) <

p(CPUDL)

Lvl 3 -3.6823 -1.9120 307.1885 0.971596

p(CPUPKAP) <

p(CPUDL)

Lvl 4 -1.8878 -1.6100 626.1343 0.946047

Inverse Alternative
Hypothesis (95%

Confidence Interval)

Scope estimate t-ratio df p-value

p(CPUPKAP) >

p(CPUDL)

Exp 1 -7.8496 -11.8092 2179.89 1.53e-31

p(CPUPKAP) >

p(CPUDL)

Lvl 1 -6.8988 -7.6231 582.1569 5.06e-14

p(CPUPKAP) >

p(CPUDL)

Lvl 2 -16.7715 -13.9820 614.6536 4.51e-39

p(CPUPKAP) >

p(CPUDL)

Lvl 3 -3.6823 -1.9120 307.1885 0.02840

p(CPUPKAP) >

p(CPUDL)

Lvl 4 -1.8878 -1.6100 626.1343 0.05395

84

so the metrics indicate that the objective to reduce memory usage has been

achieved.

5.1.5 Summary Analysis. Individual system metrics indicate that the

PKAP kernel thread drops fewer packets, consumes more CPU resources, and

uses less memory than the DaemonLogger user-space application. While the in-

dications provided by the metrics discretely do provide some information about

the impact of moving the N2d capability to kernel-space, it does not provide the

full picture without probing the dependencies between the metric data.

Of particular note is the relationship between dropped packets and CPU

utilization. Figure 5.4 provides a typical interaction between the two metrics.

The graph’s data set is from Experiment 1, bitrate level 2. Though only a single

trial run, the relationship between the two metrics is representative of all trial

runs that resulted in dropped packets. Any increase in the dropped packet rate

reduces the CPU utilization of the CUT. As the PKAP kernel module succeeds

in reducing the dropped packet rate, it fails to reduce the CPU utilization. This

relationship exists since CUT processing requirements only occur for packets

that it retrieves from the PF_RING ring buffer. Dropped packets never reach

the CUT—thereby reducing the ultimate workload of the CUT at any given

network bitrate. The effect of the dropped packets is similar to the effect that

filtering would provide to the CUT, though the dropped packets would be of

intentional choosing. Since the ultimate internal priority is capturing the data

accurately, the trade-off of CPU utilization for improved capture integrity is

still aligned with the aims of the research.

Experiment 1 trials using bitrate level 1 reveal that the PKAP CUT op-

tion does use a greater percentage of CPU resources even when the difference

cannot be attributed to dropped packets. The data does not indicate

85

●

●

●
● ● ●

●

●

●

●

●

●

●
● ● ● ● ● ●

●

●

● ●

●
●

●
● ●

● ●
●

● ● ●
● ●

●

●
● ●

●

●
●

●
●

●
●

●

●

●
●

●
●

● ●
●

●

● ●
●

● ● ●

●

0 50 100 150 200 250 300

30
40

50
60

70
80

Relationship Between Dropped Packets and CPU Utilization

time(sec)

%
 C

P
U

0
6.

6
13

.2
19

.8
26

.4
33

%
 D

ro
pp

ed

% CPU
% Dropped

0 50 100 150 200 250 300

30
40

50
60

70
80

Single Trial CPU Comparison

time(sec)

%
 C

P
U

PKAP
Daemonlogger

Figure 5.4: Experiment 1: Relationship Between Dropped Packets and CPU
Utilization: (Graph A) The scales of the Y-axes differ to optimize vi-
sual recognition of the relationship between the affect the dropped
packet rate has on the CPU utilization. The graph is composed of
a single trial; however, it is representative of the relationship in all
trials. (Graph B) Compares the CPU utilization between CUT op-
tions for the same trial as graphed in Graph A; PKAP dropped no
packets, and the DaemonLogger drop rate is as graphed in Graph
A.

86

5.2 Results and Analysis of Experiment 2

Experiment 2 gathers system metrics for each CUT option of the SUT,

while storing the packet capture data to the /dev/null device. This experi-

ment measures performance data for the capture and storage process alone; no

data queries occurred during this phase of testing. The metrics for Experiment

2 are categorized by trial set. There are 12 trial sets, each representing 5 inde-

pendent trials for various combinations of bitrate and packet size. Section 5.1.1

presents an overview of the key results for the experiment, and the following

sections detail characteristics of interest.

5.2.1 Experiment 2 Overview. The three graphs in Figure 5.5 summa-

rize the key metrics for all trial sets where packet sizes are randomized. While

imperfect, this setting is the most representative size distribution of standard

Internet traffic. Trial sets using minimum packet size (64 Bytes) provide in-

sight into the behavior of the system with a worst-case overhead to data deliv-

ery ratio, and trial sets with maximum packet size (1500 Bytes) provide insight

into the behavior of the system with a best-case overhead to data delivery ratio.

Rationale for the general exclusion of trials with minimum or maximum

sized packets from the overall summary is similar to the explanation provided

during the analysis of Experiment 1. The depiction of the influence of packet

size on the SUT performance during Experiment 2 is shown in Figure 5.6.

The use of the data regarding packet size influence is somewhat different

for Experiment 2 analysis. Experiment 2 strives to provide some assessment

and indication for performance beyond limits of what real storage hardware is

available for testing. This introduces specific departure from real-world testing,

and thus the trial data including minimum and maximum size packets is useful

for revealing certain computational aspects of CUT selection.

87

Plot of Means: Dropped Packet Rates

Bitrate Level

%
 D

ro
pp

ed
 P

ac
ke

ts

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

L1 L2 L3 L4

● ● ●

●

CUT Selection

● dl
pkap

Plot of Means: CPU Utilization

Bitrate Level

%
 C

P
U

 U
til

iz
ed

0
10

20
30

40

L1 L2 L3 L4

●

●

●

● CUT Selection

● dl
pkap

Plot of Means: Memory Utilization

Bitrate Level

M
B

 o
f M

em
or

y

52
54

56
58

60
62

L1 L2 L3 L4

● ● ● ● CUT Selection

● dl
pkap

Figure 5.5: Experiment 2: Summary Graphs of Key Metrics

88

Plot of Means: Packet Size Influence on Dropped Packet Rate

Bitrate Level

%
 D

ro
pp

ed
 P

ac
ke

ts

0
1

2
3

L1 L2 L3 L4

● ● ● ●

Packet Size

● max
min
rnd

Plot of Means: Packet Size Influence on CPU Utilization

Bitrate Level

%
 C

P
U

 U
til

iz
ed

5
10

15
20

25
30

35

L1 L2 L3 L4

●

●
●

●

Packet Size

● max
min
rnd

Figure 5.6: Experiment 1: Packet Size Impact: Depicts the impact of packet
size in both CPU utilization and Dropped Packet Rate

89

5.2.2 Packet Drop Rate. Contrary to Experiment 1, where packet drop

rate differences emerge beyond level 1 bitrates, the use of the /dev/null de-

vice for writing captured data maintains very low drop rates until much higher

bitrates. This shift is due to the fact that nearly every write is virtually non-

blocking. Though all write activity (even those to /dev/null) is a potential

blocking call, the fact that the filesystem delivers the bytes to the bit bucket

as fast as it gets them, removes one of the most significant delays of an N2d
system. The bytes never hit the buffer cache; and since the data written to

/dev/null never produces a dirty page, the bdflush kernel daemon never in-

creases the CPU usage for write tasks. It is for these reasons that the results of

Experiment 2 are useful only for identification of processing behavior outside

of the storage task.

The results of a two-variable t-test performed on the packet drop rate

for each of the 4 distinct bitrate levels, factored by CUT selection, reveal no

statistically significant packet loss for any bitrate when considering trials with

randomly selected packet sizes or maximum packet sizes; therefore, Table 5.3

displays the results of a two-variable t-test performed on the packet drop rate

of trials with minimum size packets for each of the 4 distinct bitrate levels,

factored by CUT selection.

H0:p(PktDropRatePKAP) = p(PktDropRateDL)

H0:p(PktDropRatePKAP) < p(PktDropRateDL)

The table indicates that the null hypothesis should be rejected overall and

that alternate hypothesis is valid. When the t-test is scoped by level, the null

hypothesis cannot be rejected with a 95% confidence interval for trials with

bitrate levels 2 and 3. The practical difference between methods is only visible

during trials with bitrate level 4, and the difference is estimated to be only 5%.

Yet, since bitrate level 4 is 340 Mbps for trials with minimum size packets, the

90

Table 5.3: Experiment 1 Hypothesis Testing of Dropped Packet Rate

Alternative Hypothesis
(95% Confidence

Interval)

Scope estimate t-ratio df p-value

p(PktDrpRatePKAP) <

p(PktDrpRateDL)

Exp 2 0.01508 6.87072 2206.68 4.14e-12

p(PktDrpRatePKAP) <

p(PktDrpRateDL)

Lvl 1 0 N/A N/A N/A

p(PktDrpRatePKAP) <

p(PktDrpRateDL)

Lvl 2 0.00022 0.68979 338.0031 0.24540

p(PktDrpRatePKAP) <

p(PktDrpRateDL)

Lvl 3 -0.00599 -1.42361 328 0.92224

p(PktDrpRatePKAP) <

p(PktDrpRateDL)

Lvl 4 0.05350 9.02628 464.768 2.36e-18

end result of a 5% difference translates to nearly 700,000 packets and 45 MB

of data per second.

5.2.3 CPU Utilization. As graphically depicted in the CPU Utilization

graph from Figure 5.5, there is ample evidence to reject the original null hy-

pothesis in favor of the alternate hypothesis, which states that a kernel-mode

N2d application would reduce CPU utilization.

H0:p(CPUpkap) = p(CPUDL)

HA:p(CPUpkap) < p(CPUDL)

Table 5.4 shows the results of a two-variable t-test performed on CUT

selection for each of the 4 distinct bitrate levels. The table indicates that the

PKAP kernel module clearly utilizes the CPU significantly less than the Dae-

monLogger user-space application. The data shows savings between 20-35% at

a 95% confidence interval.

Since PKAP does not buffer writes, it is not penalized the way Daemon-

Logger is in this artificial circumstance. DaemonLogger must accomplish to

work to copy the ring slots to a stream buffer and perform the expensive copy

91

Table 5.4: Experiment 2 Hypothesis Testing of CPU Utilization

Original Alternative
Hypothesis (95%

Confidence Interval)

Scope estimate t-ratio df p-value

p(CPUPKAP) <

p(CPUDL)

Exp 2 26.02774 109.7004 1765.758 0

p(CPUPKAP) <

p(CPUDL)

Lvl 1 19.57145 447.5581 335.3397 0

p(CPUPKAP) <

p(CPUDL)

Lvl 2 24.56123 72.62268 547.5201 1.58e-
283

p(CPUPKAP) <

p(CPUDL)

Lvl 3 22.07348 34.35730 165.9576 1.19e-77

p(CPUPKAP) <

p(CPUDL)

Lvl 4 35.66156 365.6073 455.083 0

from user-space to kernel-space even though the packets are immediately dis-

carded by the filesystem. The reasons that PKAP requires less CPU in this

circumstance in and of itself is of no practical value in real-world performance;

however, the data does point to a gain in write efficiency from within kernel-

space, and it indicates what percentage of the CPU resources are involved in

the CUT’s handling of the packet from the ring to the filesystem in a non-

blocking scenario.

5.2.4 Memory. As mentioned in Section 5.1.4, the memory utiliza-

tion is static and not depend ant upon system factors or workload levels. The

memory usage is not changed, and in the case of storage to /dev/null, the ad-

ditional memory (and associated copies) used by the DaemonLogger user-space

application consumes both memory and CPU resources without benefit.

5.2.5 Summary Analysis. Given the artificial nature of Experiment 2,

the resultant data and analysis not directly applicable to a real-world N2d capa-

bility; however, both the data and charts seem to indicate that a kernel-space

capture capability can derive more benefit from faster storage than a user-space

capture capability. The built in buffering from the user-space capture capabil-

92

ity can be helpful in accommodating comparably slower storage devices; yet,

if storage speeds increase, the extra cost of copying memory additional times

could prevent full utilization of the storage device performance.

5.3 Results and Analysis of Experiment 3

Experiment 3 gathers system metrics for each CUT option of the SUT,

while storing the packet capture data to a real storage device. This experi-

ment measures performance data for the capture, storage, and data query pro-

cesses. The metrics for Experiment 3 are categorized by trial set. There are 7

trial sets, each representing 5 independent trials for 7 levels of bitrate. Since

this scenario most closely represents the real-world workload of an N2d system,

the packet sizes are configured to be randomly selected for all sets. Figure

5.7 presents an overview of the key process-based results for the experiment,

while Figure 5.8 presents an overview of the key query-based results for the

experiment.

5.3.1 Experiment 3 Overview. The graphs in Figure 5.7 and Figure

5.8 summarize the key metrics for all trial sets in Experiment 3. All trial sets

in this experiment use randomly sized packets, ranging from 64 Bytes to 1500

Bytes. During trials of all bitrate levels, a query process on the SUT repeatedly

searches through all packets recorded during the trial for the marked packets

of interest.

Since Experiments 1 and 2 cover the first three system metrics under

exclusive network workload, the following sections detail the remaining query

metrics and the affect of the query metrics on the first three system metrics.

5.3.2 Query Metrics. The query process on the SUT records the num-

ber of queries successfully completed, the time delay for response, and the num-

ber of packets found. The network and query workloads combine to effectively

93

Plot of Means: Dropped Packet Rates

Bitrate Level

%
 D

ro
pp

ed
 P

ac
ke

ts

0
10

20
30

40
50

60

L1 L2 L3 L4 L5 L6 L7

● ●

●

●

●
●

●
CUT Selection

● dl
pkap

Plot of Means: CPU Utilization

Bitrate Level

%
 C

P
U

 U
til

iz
ed

15
20

25
30

35
40

45

L1 L2 L3 L4 L5 L6 L7

●

● ● ●
●

● ●

CUT Selection

● dl
pkap

Plot of Means: Memory Utilization

Bitrate Level

M
B

 o
f M

em
or

y

52
54

56
58

60
62

L1 L2 L3 L4

● ● ● ● CUT Selection

● dl
pkap

Figure 5.7: Experiment 3: Summary Graphs of Key Process-Based Metrics

94

Plot of Means: Queries Answered

Bitrate Level

Q
ue

rie
s

A
ns

w
er

ed

0
20

40
60

L1 L2 L3 L4 L5 L6 L7

●

●
●

●

●
●

●

CUT Selection

● dl
pkap

Plot of Means: Query Response Delay

Bitrate Level

de
la

y(
se

c)

0
20

40
60

L1 L2 L3 L4 L5 L6 L7

●
●

●

●

●

●

●

CUT Selection

● dl
pkap

Plot of Means: Found Packets

Bitrate Level

%
 P

ac
ke

ts
 F

ou
nd

0
20

40
60

80
10

0

L1 L2 L3 L4 L5 L6 L7

●
●

●

● ●

● ●

CUT Selection

● dl
pkap

Figure 5.8: Experiment 3: Summary Graphs of Key Query-Based Metrics

95

exercise and assess the SUT. Figure 5.8 depicts an overview of these metrics.

High-level observations from the graphs indicate the following:

• The mean values for the number of queries answered and the delay of the

responses have wide ranges for 95% confidence intervals

• The erratic patterns for the number of queries answered and the delay of

the responses

• As the bitrate level increases:

– The number of queries answered decreases

– The delay for the query responses increases

– The number of packets found decreases

• Alone, the plots of means for the query metrics do not indicate a signifi-

cant difference in performance between CUT selections

The goal of this research with respect to queries for captured data is that a

kernel-space N2d capability would retain user-space disk responsiveness to sat-

isfy live queries for the captured data. Therefore, satisfaction of this goal is

achieved by a lack of evidence to reject the null hypothesis, as such:

H0:p(QryCountPKAP) = p(QryCountDL)

HA:p(QryCountPKAP) < p(QryCountDL)

H0:p(QryDelayPKAP) = p(QryDelayDL)

HA:p(QryDelayPKAP) > p(QryDelayDL)

H0:p(QryFoundPKAP) = p(QryFoundDL)

HA:p(QryFoundPKAP) < p(QryFoundDL)

96

Table 5.5: Experiment 3 Hypothesis Testing of Query Performance

Alternative Hypothesis
(95% Confidence

Interval)

Scope estimate t-ratio df p-value

p(QryCountPKAP) <

p(QryCountDL)

Exp 3 0.51429 0.11962 67.3228 0.45257

p(QryDelayPKAP) >

p(QryDelayDL)

Exp 3 -2.00229 -0.42857 65.1373 0.33483

p(QryFoundPKAP) <

p(QryFoundDL)

Exp 3 0.00085 0.01065 65.6037 0.49577

Table 5.5 shows the results for a two-variable t-test performed on the

above metrics and bitrate, factored by CUT selection. In all cases, there is

insufficient evidence that the null hypothesis can be rejected. The data indi-

cates that the objective to retain the query performance of a user-space CUT

when using the kernel-space implementation is achieved.

5.3.3 Packet Drop Rate. The packet drop rate not only describes the

performance of the storage system; it also contributes directly to the success-

ful search for packets of interest—marked packets, in the case of Experiment

3. The relationship between the packet drop rate and CPU utilization largely

mimics the behavior seen in Experiment 1. As more packets are dropped, the

CPU utilization decreases.

Table 5.6 shows the results for a two-variable t-test on packet drop rate

and bitrate level, factored by CUT selection. There is insufficient evidence

to reject the null hypothesis, indicating that CUT selection does not signifi-

cantly impact packet drop rates when a query workload is present. While the

dropped packet rate of DaemonLogger under a query workload is estimated to

be slightly less than 0.1% better than PKAP, this gap is consumed by the 2.6%

range of the 95% confidence interval.

Since the null hypothesis is rejected in Experiment 1 and accepted in Ex-

periment 3, this identifies that the query workload changes the impact of CUT

97

Table 5.6: Experiment 3 Hypothesis Testing of Dropped Packet Rate

Alternative Hypothesis
(95% Confidence

Interval)

Scope estimate t-ratio df p-value

p(PktDrpRatePKAP) <

p(PktDrpRateDL)

Exp 3 -0.00963 -0.94478 4105.14 0.82759

Table 5.7: Experiment 3 Hypothesis Testing of CPU Utilization

Original Alternative
Hypothesis (95%

Confidence Interval)

Scope estimate t-ratio df p-value

p(CPUPKAP) <

p(CPUDL)

Exp 3 3.39744 5.43562 3942.623 2.90e-08

selection on the packet drop rate. A potential reason for the comparatively

improved performance of the user-space CUT is the write buffering used by

the DaemonLogger application. Since the PKAP module uses the slot memory

directly for writing to the filesystem, any blocking that occurs during writes

can quickly consume the free ring slots. This effect can be reduced some-

what by DaemonLogger’s buffering, as the ring is emptied quickly by a sim-

ple memcpy()—providing another buffer to reduce the cost of storage device

contention.

5.3.4 CPU Utilization. Table 5.7 shows the results of a two-variable

t-test performed on CPU utilization and CUT selection during Experiment 3.

There is sufficient evidence to reject the null hypothesis in favor of the alter-

nate hypothesis, indicating that the kernel-space CUT reduces CPU utilization

when a query workload is present. The estimated reduction of the kernel-space

CUT is 3%, at a 95% confidence interval. In practice, the difference of 3% uti-

lization when maximum utilization is under 50% is insignificant; however, this

behavior is a reversal of that found during Experiment 1 tests. This could indi-

cate that non-buffered, kernel-space file writing incurs reduced contention in a

non-write-exclusive scenario.

98

5.3.5 Memory. As mentioned in Section 5.1.4, the memory utilization

is static and not depend ant upon system factors or workload levels. Based on

the indications of the buffering benefits mentioned in Section 5.3.3, the mem-

ory DaemonLogger uses in stream buffering writes appears to be beneficial in

during times of heavy disk I/O storms. Alternatively, the buffering can be in-

creased for either CUT option by initializing the PF_RING ring buffer with

more slots.

5.3.6 Summary Analysis. The query workload imposed during Exper-

iment 3 certainly impacted the comparative performance of the CUT selections

versus that described during Experiment 1 analysis. In total, the PKAP packet

drop rate is indistinguishable that of DaemonLogger, while demanding slightly

less CPU utilization and maintaining query performance.

5.4 Overall Analysis

To recap, the key aspects of the PKAP kernel module during the three

experiments:

• The PKAP kernel module improves upon user-space N2d capture perfor-

mance either by:

– Capturing a greater percentage of packets, with increased CPU uti-

lization, when the storage writes have exclusive access to the storage

device

– Capturing the same percentage of packets, with reduced CPU utiliza-

tion, when the storage writes face heavy disk I/O contention

• The PKAP kernel module uses less memory; however, the practical differ-

ence of the reduction is insignificant on today’s computing systems

99

• The PKAP kernel module does not negatively alter the query response

performance characteristics of the system compared to a user-space CUT

selection

100

VI. Discussion

T HIS chapter discusses the overall conclusions drawn during the course

of the research. Section 6.1 addresses each research objective and deter-

mines whether or not the objectives were achieved, and Section 6.2 presents

the significance of the research. Finally, Section 6.3 recommends possible fu-

ture directions for related research.

6.1 Conclusions

6.1.1 Construct a Kernel-space N2d Capability. The first goal of this

research is to design and build a proof of concept N2d capture capability that

resides within kernel-space. The basic functions of an N2d capture capability

are the ability to promiscuously sniff packets, filter out packets that are not of

interest, and store the packets to a permanent storage device in a format that

can be used to reconstruct the network activity after the fact. Additionally, the

system must be capable of long-term, unattended fielding, which requires that

system to police its own storage system by rolling old log information as space

for new data is required.

To accomplish this goal, the PF_RING kernel module is modified to export

a given ring so the memory can be addressed by another kernel module and to

provide necessary functions to select the ring to be shared. With the modified

PF_RING kernel module in place, the PKAP Linux kernel module is designed

and developed to create a PF_RING ring-buffer, initialize it, convert it to a

kernel-space ring, and consume the ring’s memory slots in the same way that

the pfring library functions in user-space. Extending the role of a typical Linux

kernel module beyond its traditional role, the PKAP module is able to write the

captured packets directly to a pcap-formatted log file and orchestrate the log

rotation for long-term, unattended deployment.

The PKAP kernel module is loaded onto a Linux test system and tested

against real network traffic. Demonstrating the ability to capture packets, fil-

101

ter them, store them, and maintain their lifecycle through live network testing

accomplishes the first research goal.

6.1.2 Reduce Packet Drop Rate of the Capture Process. This second

research goal is to improve the performance characteristics of an N2d capture

system by employing the kernel-space capture capability in place of a user-

space implementation. The specific metric for improvement in this case is the

reduction of the packet drop rate during capture of network traffic.

Testing the system with live network traffic reveals that PKAP reduces

the packet drop rate by an average of 8.9% (using a 95% confidence interval)

when disk I/O contention is low. In cases where the disk I/O contention is

high, the PKAP module does not reduce the drop rate from that of a user-space

application; however, during this scenario, the PKAP module produces a favor-

able reduction in CPU utilization compared to the user-space implementation.

Given the practical use of an N2d system to capture network data for the ma-

jority of its runtime and be required to satisfy queries for data periodically, the

changes that are made by PKAP to the packet drop rate, and its depend ant

metrics, meet the second research goal.

6.1.3 Reduce CPU Utilization of the Capture Process. The third re-

search goal is to reduce the resource demands of the N2d capture process by

reducing the CPU utilization. Reduction of the CPU utilization is thought pos-

sible due to the removal of multiple memory copies and the transition from

user-space to kernel-space for writing the packets to disk; however, the reduced

CPU utilization is only observable during times of high disk I/O contention. At

these times, PKAP reduces the CPU utilization by an average of 3%, at a 95%

confidence interval.

When disk I/O contention is low, the PKAP module actually increases

CPU utilization of the capture system because of the increased capacity to cap-

102

ture packets without dropping them. As discussed in Chapter V, the CPU uti-

lization is depend ant on many things, one of which is the packet drop rate.

By reducing the packet drop rate by 8.9% on average, the capture system must

expend resources to handle the additional workload. During test scenarios of

this type, the PKAP module increases CPU utilization by an average of 7.8%,

at a 95% confidence interval. The increased CPU utilization is an acceptable

trade-off for the accurate capture of a higher percentage of network traffic. This

is true particularly since the PKAP module reduces the packet drop rate more

than it increases the CPU utilization.

Considering the behavior and benefits of the PKAP module on CPU uti-

lization for situations of both high and low disk I/O contention in light of the

priority impact of the packet drop rate on the effectiveness of an N2d capture

system, the research goal is achieved.

6.1.4 Reduce Memory Utilization of the Capture Process. The fourth

research goal is to reduce the resource demands of the N2d capture process by

reducing memory utilization. Reduction of memory utilization is thought pos-

sible due to the PKAP module’s direct use of the ring memory slot in the call to

write the data to disk. The kernel-space implementation uses no stream buffer-

ing, since filesystem writes from within the kernel appear to be cheaper than

the additional memory copies required to separate the ring consumption from

storage tasks or to buffer the data from the ring for fewer large write actions

to disk. Through the lack of these copies, the PKAP kernel-space implemen-

tation reduces the memory utilization of the N2d task by 10 MB, which under

the tested PF_RING configuration equates to a 16% reduction, with a 100%

confidence interval. The static reduction of memory utilization achieves this

research goal.

103

6.1.5 Retain Query Response Performance of the Capture Process. The

final research goal is to retain the query response performance of the capture

system for a given query workload. While other research goals are internally

focused, this goal targets the ability of the system to perform the external

service—the service which defines the reason for the system’s existence.

The query response performance is a tri-faceted metric, encompassing the

number of queries during a period of time, the average delay time for each

query, and the percent of the known packets of interest found and retrieved by

the query. Throughout the trial sets of Experiment 3, the PKAP kernel module

does not affect the query response metrics in a statistically distinguishable

way from the user-space implementation. The PKAP kernel-space storage of

captured packets does not negatively impact the query response performance

of the N2d system, thereby achieving the final research goal.

6.2 Significance

This research provides Law Enforcement, Homeland Defense, the Depart-

ment of Defense, and industry at large with an improved method for efficiently

capturing network traffic to permanent storage. The N2d capture capability

benefits the overall security of information and resources of high value in en-

vironments with persistent threats. Any improvement to the efficiency of col-

lection reduces the footprint and increase the effectiveness of the capture ca-

pability. The PKAP proof of concept improves the efficiency of the N2d process,

and indications are that it scales better than user-space implementations with

increased performance of storage devices.

At the technical level, the PKAP Linux kernel module introduces a stable,

high-performance capture application that can both write to disk and orches-

trate the rolling log files necessary for long-term deployments of an N2d service.

This research provides a unique way to improve a capture process where the

principle goal is storage of the packet streams to disk, and it paves the way for

104

future research to begin addressing the performance issues of capture systems

beyond just the capture side of the equation.

Though PKAP only improves capture performance by reducing the

dropped packet rate 9%, that small percentage could translate to losses that

approach 90 Mbps on an Gigabit Ethernet link. A common method to obfuscate

malicious activity is to surround it by an overwhelming amount of harmless

data. If the flood of network traffic increases the probability that key pack-

ets are lost, then the evidence gathered decreases in value—the critical attack

may even be missed altogether. In light of the value of the data lost, even an

improvement of 9% can be significant.

6.3 Future Efforts

The next logical steps for subsequent research include the following list of

related efforts:

• Scale the PKAP proof of concept beyond a single Gigabit Ethernet capture

interface

• Expand the PF_RING and PKAP kernel modules to capture, filter, and

store IPv6 packets

• Evaluate performance with high-end storage devices

• Take further advantage of the kernel-space location through the effective

use of the already-parsed sk_buff data to build indexes for the stored

packets to improve the query response performance through reduction of

disk I/O contention

• Improve the run-time control of the PKAP kernel module to provide au-

tonomous survivability before the capture system reaches a failure mode

105

Appendix A. DaemonLogger Modifications
Index : daemonlogger−1.2 .1 / daemonlogger . c

===

−−− daemonlogger−1.2 .1 / daemonlogger . c (rev is ion 88)

+++ daemonlogger−1.2 .1 / daemonlogger . c (rev is ion 89)

@@ −216,4 +216,8 @@

s t a t i c int maxpct ;

s t a t i c int prune_flag ;

+/*
+ * Option for PKAP comparison

+ * /

+ s t a t i c int logtonul l = 0 ;

s t a t i c char * inter face ;

@@ −415,4 +419,11 @@

{

time_t currtime ;

+ / / For PKAP Comparison

+ char* n u l l f i l e = " / dev / null " ;

+

+ i f (l og tonul l == 1) {

+ return n u l l f i l e ;

+ }

+ / / End of added code for PKAP comparison

memset (logdir , 0 , STDBUF) ;

@@ −1137,4 +1148,5 @@

pr int f (" −u <user name> Set user ID to <user name>\n ") ;

pr in t f (" −v Show daemonlogger version\n ") ;

+ pr int f (" −X Log to / dev / null f or PKAP \n ") ;

}

@@ −1153,5 +1165,5 @@

while ((ch = getopt (argc , argv ,

− " c : df : Fg : hi : l :m:M: n : o : p :P : rR : s : S : t :T : u : vz ")) != −1)

106

+ " c : df : Fg : hi : l :m:M: n : o : p :P : rR : s : S : t :T : u : vXz")) != −1)

{

switch (ch)

@@ −1300,4 +1312,7 @@

prune_flag = PRUNE_OLDEST_IN_RUN;

break ;

+ case ’X ’ : / * Added for PKAP Comparison * /

+ logtonul l = 1 ;

+ break ;

default :

break ;

107

Appendix B. PF_RING Modifications
Index : pf_ring / l inux / pf_ring . h

===

−−− pf_ring / l inux / pf_ring . h (rev is ion 12)

+++ pf_ring / l inux / pf_ring . h (rev is ion 15)

@@ −44,4 +44 ,8 @@

#define SO_SET_APPL_NAME 110

#define SO_SET_PACKET_DIRECTION 111

+#define SO_SET_PKAP_RING 119 / * Export pointer to

+ ring so PKAP

+ can use i t from

+ kernel space * /

/ * Get * /

@@ −454,4 +458,7 @@

/ * Function pointer * /

do_handle_fi ltering_hash_bucket handle_hash_rule ;

+

+ / * PKAP Ring Switch * /

+ u_int8_t pkap_ring ; / / 0=not_pkap 1=pkap

} ;

Index : pf_ring / pf_ring . c

===

−−− pf_ring / pf_ring . c (rev is ion 12)

+++ pf_ring / pf_ring . c (rev is ion 77)

@@ −74,5 +74,28 @@

#include <linux / pf_ring . h>

−/* #define RING_DEBUG * /

+ / / # define RING_DEBUG

+

+/ /# define PKAP_DEBUG

+# i f d e f PKAP_DEBUG

+#define pkap_debug (a , args . . .) do { \

+ printk (KERN_INFO " [PKAP_PF_RING Debug] : " a , ## args) ; \

108

+} while (0)

+#else / * DEBUG * /

+#define pkap_debug (a , args . . .)

+#endif / * DEBUG * /

+

+#define PKAP_ENABLED

+

+# i f d e f PKAP_ENABLED

+struct ring_opt *pkap_pfr ;

+EXPORT_SYMBOL(pkap_pfr) ;

+#endif

+

+

+# i f d e f PKAP_DEBUG

+int pkap_test = 777;

+EXPORT_SYMBOL(pkap_test) ;

+#endif

+

/ * *** * /

#define TH_FIN_MULTIPLIER 0x01

@@ −187,7 +210,8 @@

/ * Defaults * /

s t a t i c unsigned int num_slots = 4096;

−s t a t i c unsigned int enable_tx_capture = 1;

+ s t a t i c unsigned int enable_tx_capture = 0;

s t a t i c unsigned int enable_ip_defrag = 0;

−s t a t i c unsigned int transparent_mode = standard_linux_path ;

+ s t a t i c unsigned int transparent_mode = driver2pf_ring_non_transparent ;

+ / / s t a t i c unsigned int transparent_mode = standard_linux_path ;

s t a t i c u_int32_t r ing_ id_ser ia l = 0 ;

@@ −546,4 +570,9 @@

spr int f (buf + rlen , "Num Free Slots : %u\n" ,

get_num_ring_free_slots (pfr)) ;

+# i f d e f PKAP_ENABLED

109

+ rlen +=

+ spr int f (buf + rlen , "PKAP Ring? : %d\n" ,

+ pfr−>pkap_ring ? 1 : 0) ;

+#endif

} e lse

rlen = spr int f (buf , "WARNING f s i == NULL\n ") ;

@@ −1441,8 +1470,13 @@

* /

+

i f ((! pfring_enabled) || (! pfr−>ring_act ive))

return (−1);

+# i f d e f PKAP_ENABLED

+ atomic_inc(&pfr−>num_ring_users) ;

+#e lse / * PKAP * /

atomic_set(&pfr−>num_ring_users , 1) ;

+#endif / * PKAP * /

/ * [1] BPF Fi l ter ing (from af_packet . c) * /

@@ −1468,5 +1502,14 @@

skb−>cloned) ;

#endif

+

+

+# i f d e f PKAP_ENABLED

+ atomic_dec(&pfr−>num_ring_users) ;

+#e lse / * PKAP * /

atomic_set(&pfr−>num_ring_users , 0) ;

+#endif / * PKAP * /

+

+

+

return (−1);

}

110

@@ −1735,5 +1778,11 @@

i f (free_parse_mem)

free_parse_memory (parse_memory_buffer) ;

− atomic_set(&pfr−>num_ring_users , 0) ;

+

+# i f d e f PKAP_ENABLED

+ atomic_dec(&pfr−>num_ring_users) ;

+#e lse / * PKAP * /

+ atomic_set(&pfr−>num_ring_users , 0) ;

+#endif / * PKAP * /

+

return (−1);

}

@@ −1786,5 +1835,10 @@

i f (free_parse_mem)

free_parse_memory (parse_memory_buffer) ;

− atomic_set(&pfr−>num_ring_users , 0) ;

+

+# i f d e f PKAP_ENABLED

+ atomic_dec(&pfr−>num_ring_users) ;

+#e lse / * PKAP * /

+ atomic_set(&pfr−>num_ring_users , 0) ;

+#endif / * PKAP * /

return (0) ;

@@ −2075,6 +2129,11 @@

hdr . len = hdr . caplen = skb−>len + disp l ;

+

/ * Avoid the ring to be manipulated while playing with i t * /

read_lock_bh(&ring_mgmt_lock) ;

+

+ / *
+ * BOOKMARK01: PKAP_ENABLED hook search

+ * /

111

/ * [1] Check unclustered sockets * /

@@ −2408,4 +2467,13 @@

return −EPERM;

+# i f d e f PKAP_ENABLED

+ pkap_debug (" sock−>type = %d\n" , sock−>type) ;

+ i f (sock−>type == (SOCK_RAW + 10)) {

+ sock−>type = SOCK_RAW;

+ pkap_debug (" Flag to create pkap ring structure . . . \ n ") ;

+ / / FIXME: Start custom sett ings

+ }

+#endif

+

i f (sock−>type != SOCK_RAW)

return −ESOCKTNOSUPPORT;

@@ −2459,4 +2527,8 @@

sk−>sk_destruct = ring_sock_destruct ;

+

+# i f d e f PKAP_ENABLED

+ pfr−>pkap_ring = 0; / / Use setsockopt to turn on

+#endif

r ing_insert (sk) ;

@@ −3298,5 +3370,5 @@

u_int16_t rule_id , ru l e_ inac t i v i t y ;

packet_direct ion d irec t i on ;

−

+ pkap_debug (" Entering ring_setsockopt () with optname %d\n" , optname) ;

i f (pfr == NULL)

return (−EINVAL) ;

@@ −3415,4 +3487,5 @@

case SO_SET_APPL_NAME:

112

+ pkap_debug ("GOT INSIDE SET APPL_NAME\n ") ;

i f (optlen >

s i z e o f (applName) / * Names should not be too long * /)

@@ −3829,5 +3902,23 @@

}

break ;

−

+# i f d e f PKAP_ENABLED

+ case SO_SET_PKAP_RING:

+ i f (pkap_pfr && (pkap_pfr−>pkap_ring == 0)) {

+ pkap_debug ("ERROR: Can only be one PKAP Ring !\n ") ;

+ return −EINVAL;

+ } e lse i f (pkap_pfr && (pkap_pfr−>pkap_ring == 1)) {

+ pkap_debug ("WARNING: This ring i s already a PKAP Ring . . . \ n ") ;

+ ret = 0;

+ } e lse {

+ pkap_pfr = pfr ; / * This exports the current pfr to kernel

+ space so a PKAP−enable kernel thread can

+ read from this ring through an extern

+ declared pkap_pfr variable * /

+ pkap_pfr−>pkap_ring = 1;

+ pkap_debug (" Converted PF_RING to PKAP_RING\n ") ;

+ ret = 0;

+ }

+ break ;

+#endif / * PKAP_ENABLED * /

default :

found = 0;

113

Bibliography

1. Anderson, David P., et al. “A file system for continuous media,” ACM Trans.
Comput. Syst., 10(4):311–337 (1992).

2. Bar, Moshe. Linux File Systems. Osborne/McGraw-Hill, 2001.

3. Barton, Jim. “From Server Room to Living Room,” Queue, 1(5):20–32
(2003).

4. Benvenuti, Christian. Understanding Linux Networking Internals.
O’Reilly Media, Inc., 2006.

5. Birch, Samuel, “PKAP 1.0 Source Code,” Jan 2010.

6. Birrell, A D, et al. The Echo distributed file system. Technical Report, 1993.

7. Bishop, Matt. Computer Security: Art and Science. Addison Wesley, 2003.

8. Biswas, Amitava and Purnendu Sinha. “Efficient real-time Linux inter-
face for PCI devices: A study on hardening a Network Intrusion Detection
System.” The Fifth System Administration and Network Engineering Con-
ference, SANE2006. 2006.

9. Bovet, Daniel and Marco Cesati. Understanding the Linux Kernel, Third
Edition (3 Edition). O’Reilly Media, Inc., November 2005.

10. Bovet, Daniel P. and Marco Cesati. Essential Linux Device Drivers (3rd
Edition). Prentice Hall Open Source Software Development Series, Pren-
tice Hall PTR, 2008.

11. Chang, Fay, et al. “Bigtable: a distributed storage system for structured
data.” OSDI ’06: Proceedings of the 7th symposium on Operating systems
design and implementation. 205–218. Berkeley, CA, USA: USENIX Asso-
ciation, 2006.

12. Combs, Gerald, “Libpcap File Format.” http://wiki.wireshark.org/
Development/LibpcapFileFormat/, Dec 2008.

13. Cooperstein, Jerry. Writing Linux Device Drivers: a guide with exercises.
Jerry Cooperstein, 2009.

14. Deri, Luca, “PF_RING Source Code.” http://www.ntop.org/download.
html#PF_RING, 2009. Access source directly through svn co
https://svn.ntop.org/svn/ntop/trunk/PF_RING/.

15. Deri, Luca, et al. “Improving Passive Packet Capture: Beyond Device
Polling.” In Proceedings of SANE 2004. 2004.

16. Fenner, Bill, et al., “libpcap-1.0.0.tar.gz.” http://www.tcpdump.org/
release/libpcap-1.0.0.tar.gz, Oct 2008. Source Code Tarball.

114

http://wiki.wireshark.org/Development/LibpcapFileFormat/
http://wiki.wireshark.org/Development/LibpcapFileFormat/
http://www.ntop.org/download.html#PF_RING
http://www.ntop.org/download.html#PF_RING
http://www.tcpdump.org/release/libpcap-1.0.0.tar.gz
http://www.tcpdump.org/release/libpcap-1.0.0.tar.gz

17. Ghemawat, Sanjay, et al. “The Google file system,” SIGOPS Oper. Syst.
Rev., 37(5):29–43 (2003).

18. Giampaolo, Dominic. Practical File System Design with the Be File System
(1 Edition). Morgan Kaufmann Publishers, 1999.

19. Gonzalez, Jose Maria and Vern Paxson. “pktd: A Packet Capture and In-
jection Daemon.” Passive and Active Measurement Workshop. 2003.

20. Iannaccone, Gianluca, et al. “Monitoring very high speed links.” IMW ’01:
Proceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement.
267–271. New York, NY, USA: ACM, 2001.

21. Kroah-Hartman, Greg. “Things you should never do in the kernel,” Linux
J., 2005(133):9 (2005).

22. Lamping, Ulf, et al., “Wireshark User’s Guide.” http://www.wireshark.
org/docs/, 2008.

23. Larabel, Michael, “Real World Benchmarks Of The EXT4 File-System.”
http://www.phoronix.com/scan.php?page=article&item=ext4_
benchmarks, Dec 2008.

24. Love, Robert. Linux Kernel Development, Second Edition (2 Edition). Nov-
ell Press, January 2005.

25. Mandia, Kevin, et al. Incident Response & Computer Forensics, Second
Edition (2nd Edition). McGraw-Hill/Osborne, 2003.

26. Mauerer, Wolfgang. Professional Linux Kernel Architecture. Wrox Pro-
grammer to Programmer, Wiley Publishing, Inc., 2008.

27. McGrath, Roland, et al., “GNU C Library.” http://ftp.gnu.org/gnu/
glibc/glibc-2.11.1.tar.bz2, Dec 2009.

28. McVoy, L W and S R Kleiman. “Extent-like performance from a UNIX file
system.” In Proceedings of the USENIX Winter Technical Conference. 1991.

29. Ousterhout, J K, et al. “A Trace-Driven Analysis of the UNIX 4.2 BSD File
System.” In Proceedings of the 10th ACM Symposium on Operating System
Principles (SOSP 85. 15–24. 1985.

30. Ousterhout, John and Fred Douglis. Beating the I/O Bottleneck: A Case for
Log-Structured File Systems. Technical Report, 1988.

31. Roesch, Martin, “The Story of Snort: Past, Present and Future.” http:
//www.net-security.org/article.php?id=860, 2005. Recorded in-
terview with Snort Creator.

32. Roesch, Martin, “DaemonLogger Web Site.” http://www.snort.org/
users/roesch/Site/Daemonlogger/Daemonlogger.html, Nov 2008.

115

http://www.wireshark.org/docs/
http://www.wireshark.org/docs/
http://www.phoronix.com/scan.php?page=article&item=ext4_benchmarks
http://www.phoronix.com/scan.php?page=article&item=ext4_benchmarks
http://ftp.gnu.org/gnu/glibc/glibc-2.11.1.tar.bz2
http://ftp.gnu.org/gnu/glibc/glibc-2.11.1.tar.bz2
http://www.net-security.org/article.php?id=860
http://www.net-security.org/article.php?id=860
http://www.snort.org/users/roesch/Site/Daemonlogger/Daemonlogger.html
http://www.snort.org/users/roesch/Site/Daemonlogger/Daemonlogger.html

33. Rosenblum, Mendel and John Ousterhout. “The LFS storage manager.” In
USENIX Summer. 315–324. 1990.

34. Rosenblum, Mendel and John K. Ousterhout. “The design and implementa-
tion of a log-structured file system,” ACM Trans. Comput. Syst., 10(1):26–52
(1992).

35. Schneider, Fabian and Jörg Wallerich. “Performance evaluation of packet
capturing systems for high-speed networks.” CoNEXT ’05: Proceedings of
the 2005 ACM conference on Emerging network experiment and technology.
284–285. New York, NY, USA: ACM, 2005.

36. Seltzer, Margo Ilene. File system performance and transaction support.
Technical Report, 1992.

37. Staelin, Carl Hudson. High Performance File System Design. Technical
Report, 1991.

38. Torvalds, Linus, et al., “Linux Kernel Source Code.” http://www.
kernel.org/pub/linux/kernel/v2.6/linux-2.6.30.10.tar.bz2,
Dec 2009.

39. Venkateswaran, Sreekrishnan. Essential Linux Device Drivers. Prentice
Hall, 2008.

40. Zhang, Zhihui and Kanad Ghose. “hFS: a hybrid file system prototype for
improving small file and metadata performance,” SIGOPS Oper. Syst. Rev.,
41(3):175–187 (2007).

116

http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.30.10.tar.bz2
http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.30.10.tar.bz2

Vita

Samuel W. Birch graduated from Ebenezer Faith Christian School in Plymouth,

Pennsylvania. He entered undergraduate studies at the United States Air

Force Academy in Colorado where he graduated with a Bachelor of Science

degree in May 1996. He received a Regular Commission upon graduation.

His first assignment was at Scott AFB as a Network Engineer in the 375th

Communications Group in June 1996. In August 1998, he was assigned to the

375th Operations Group, Scott AFB, Illinois where he served as the executive

officer to the Group Commander. During 1999, he was assigned to Kelly AFB

where he served as a Network Security Engineer for the Air Force Information

Operations Center. In 2001, he became the Chief Countermeasures Architect

in the Information Operations Technology Division. In 2003, he separated from

Active Duty to serve in the Air Force as a DoD Civilian—performing the roles

of Chief Countermeasures Architect and the Information Operations Platform

Lead Engineer. In 2008, he entered the Graduate School of Engineering and

Management, Air Force Institute of Technology. Upon graduation, he will be

assigned to the 688th Information Operations Wing, Lackland AFB, TX.

117

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

05–03–2010 Master’s Thesis Jun 2008 — Mar 2010

Performance Characteristics of a
Kernel-Space Packet Capture Module

NO FUNDS PROVIDED

Birch, Samuel W., IA-04, DAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCO/ENG/10-03

688th Information Operations Wing
Attn: Mr. Chet M. Wall
102 Hall Boulevard, Suite 310
San Antonio, TX 78243
(210)977-6603

90 IOS/TA

Approval for public release; distribution is unlimited.

This research attempts to improve the efficiency of capturing network packets to disk using commodity, general-purpose
hardware and operating systems. It examines the bottlenecks between NIC and disk, implements a kernel-space capture
capability to improve storage efficiency, and analyzes the performance characteristics of this approach. Results show that
a kernel-space NIC-to-Disk capture module is both possible and beneficial. The proof of concept PKAP kernel-space
packet capture module can capture packets to disk with a packet drop rate 8.9% less than the user-space equivalent, at a
95% confidence interval. During the high levels of disk I/O contention produced by queries for the captured data, the
PKAP implementation shows a 3% reduction in CPU utilization, and overall the PKAP implementation reduces memory
utilization of the capture process by 16%.

packet capture, kernel thread, ring buffer, network, security

U U U UU 132

Dr. Robert F. Mills

(937) 255–3636, ext 4527; Robert.Mills@afit.edu

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	I. Introduction
	1.1 Motivation
	1.2 Problem
	1.3 Research Objectives
	1.4 Limitations
	1.5 Implications
	1.6 Thesis Structure

	II. Literature Review
	2.1 Background On Packet Capture
	2.1.1 Sniffing
	2.1.2 Capture Types
	2.1.2.1 Live Analysis
	2.1.2.2 Cyber Hind-Sight

	2.1.3 Capture Tools
	2.1.3.1 Common Tools
	2.1.3.2 High-End Capture Tools

	2.2 NIC-to-Disk Packet Capture and Network Security
	2.2.1 Purpose
	2.2.2 Execution
	2.2.2.1 Basic Architecture
	2.2.2.2 Extended Architecture

	2.2.3 Cost
	2.2.4 Technical Challenges

	2.3 Packet Capture Mechanics
	2.3.1 Overview
	2.3.2 AF_PACKET (libpcap-1.0.0 vanilla)
	2.3.2.1 Packet Path
	2.3.2.2 The pcap File Format

	2.3.3 NAPI
	2.3.4 libpcap-mmap
	2.3.5 PF_RING: libpcap-ring
	2.3.5.1 The PF_RING Kernel Module
	2.3.5.2 The pfring library

	2.3.6 DMA Ring Module

	2.4 Storage Efficiency
	2.5 Summary

	III. Design
	3.1 Problem Definition
	3.1.1 Goals and Hypothesis
	3.1.2 Approach
	3.1.2.1 Solution Space
	3.1.2.2 Direction
	3.1.2.3 Prototype

	3.2 Moving to the Kernel
	3.2.1 Linux Kernel Modules
	3.2.2 Linux Kernel Threads
	3.2.3 Capturing Packets from Kernel-Space
	3.2.3.1 Selection of PF_RING
	3.2.3.2 Modifying PF_RING
	3.2.3.3 Accessing PF_RING from PKAP

	3.2.4 Breaking the Rules (Writing Files from Kernel-Space)

	3.3 Architecture Overview

	IV. Methodology
	4.1 System Boundaries
	4.2 Evaluation Methodology
	4.3 System Services
	4.4 System Workload
	4.4.1 Network Traffic
	4.4.1.1 Characteristics
	4.4.1.2 Bitrates
	4.4.1.3 Duration

	4.4.2 Data Queries
	4.4.2.1 Query Object Creation
	4.4.2.2 Query-Response Workload

	4.4.3 Disk Maintenance

	4.5 System Performance Metrics
	4.6 System Parameters
	4.6.1 Capture Method
	4.6.2 Disk Device Selection
	4.6.3 Filtering
	4.6.4 System Specifications

	4.7 System Factors
	4.7.1 Capture Method
	4.7.1.1 PKAP Kernel Module
	4.7.1.2 DaemonLogger

	4.7.2 Storage Device
	4.7.3 Network Workload
	4.7.3.1 Packet Size
	4.7.3.2 Bitrate

	4.7.4 Query Workload

	4.8 Evaluation Technique and Environment
	4.8.1 Evaluation Environment
	4.8.2 Evaluation Technique
	4.8.2.1 Dropped Packet Rate
	4.8.2.2 CPU Utilization
	4.8.2.3 Memory Utilization
	4.8.2.4 Query Delay

	4.9 Experiment Design
	4.9.1 Experiment 0: Pilot Testing
	4.9.2 Experiment 1: Packets to Disk
	4.9.3 Experiment 2: Packets to /dev/null
	4.9.4 Experiment 3: Impact of Data Queries
	4.9.5 Methodology Summary

	V. Analysis
	5.1 Results and Analysis of Experiment 1
	5.1.1 Experiment 1 Overview
	5.1.2 Packet Drop Rate
	5.1.3 CPU Utilization
	5.1.4 Memory Utilization
	5.1.5 Summary Analysis

	5.2 Results and Analysis of Experiment 2
	5.2.1 Experiment 2 Overview
	5.2.2 Packet Drop Rate
	5.2.3 CPU Utilization
	5.2.4 Memory
	5.2.5 Summary Analysis

	5.3 Results and Analysis of Experiment 3
	5.3.1 Experiment 3 Overview
	5.3.2 Query Metrics
	5.3.3 Packet Drop Rate
	5.3.4 CPU Utilization
	5.3.5 Memory
	5.3.6 Summary Analysis

	5.4 Overall Analysis

	VI. Discussion
	6.1 Conclusions
	6.1.1 Construct a Kernel-space N.95ex1.52.55ex1.5d Capability
	6.1.2 Reduce Packet Drop Rate of the Capture Process
	6.1.3 Reduce CPU Utilization of the Capture Process
	6.1.4 Reduce Memory Utilization of the Capture Process
	6.1.5 Retain Query Response Performance of the Capture Process

	6.2 Significance
	6.3 Future Efforts

	Appendix A. DaemonLogger Modifications
	Appendix B. PF_RING Modifications
	Bibliography
	Vita
	SF 298

